Structural and magnetic properties of Bi3+ ion doped Ni–Cu–Co nano ferrites prepared by sol–gel auto combustion method

  • Xiaoguang Pan
  • Aimin SunEmail author
  • Yingqiang Han
  • Wei Zhang
  • Xiqian Zhao


Bismuth doped Ni–Cu–Co nano ferrites with the chemical composition Ni0.2Cu0.2Co0.6Fe2−xBixO4 (x = 0.0, 0.025, 0.05, 0.075, 0.1) were prepared by sol–gel auto-combustion technology. The analysis of the X-ray diffraction (XRD) patterns confirms that all the samples have a cubic spinel structure. The particle sizes of the prepared samples (between 51 and 55 nm) are determined by the Scherrer equation. The obtained Fourier transform infrared measurement also confirms the formation of the spinel structure. It was observed that with the increase of Bi3+ ion concentration, the protruding absorption band was slightly shifted to the high frequency side. Transmission electron microscopy images show the presence of particles which are spherically cubic shaped crystallites. It has been proved that the synthesized ferrite has pure phase and structure by Energy dispersive X-ray, and Bi3+-doping was successfully achieved. Cation redistribution in spinel ferrite nanoparticles are confirmed by X-ray photoelectron spectroscopy (XPS). The magnetic parameters of the samples are measured by Vibration sample magnetometer (VSM) at room temperature with a maximum magnetic field of 1 T. It can be clearly observed that the magnetic properties such as saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) decrease significantly with the bismuth ion concentration increases. This is because Bi3+ ions replace Fe3+ ions, and Bi3+–Fe3+ ion interactions are more predominates than Fe2+–Fe3+ ion interactions. This also indicates that the bismuth doped nickel copper cobalt ferrite has low magnetic properties.


  1. 1.
    V. Pallai, D.O. Shah, Synthesis of high coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163, 243–248 (1996)CrossRefGoogle Scholar
  2. 2.
    S. Kumar, T.J. Shinde, P.N. Vasambekar, Microwave synthesis and characterization of nano crystalline Mn-Zn Ferrites. Adv. Mater. Lett. 4, 373–377 (2013)CrossRefGoogle Scholar
  3. 3.
    G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, R.J. Chaudhary, Structural, magnetic and optical studies of nickel ferrite thin films. Adv. Mater. Lett. 3, 21–28 (2012)CrossRefGoogle Scholar
  4. 4.
    T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos, G. Kordas, Microwave behavior of ferrites prepared via sol-gel method. J. Magn. Magn. Mater. 246, 360–365 (2002)CrossRefGoogle Scholar
  5. 5.
    G.A. Sawatzky, F.V.D. Woude, A.H. Morrish, Cation distributions in octahedral and tetrahedral sites of the ferrimagnetic spinel CoFe2O4.. J. Appl. Phys. 39, 1204–1205 (1968)CrossRefGoogle Scholar
  6. 6.
    S.M. Asgarian, S. Pourmasoud, Z. Kargar, A. Sobhani-Nasab, M. Eghbali-Arani, Investigation of positron annihilation lifetime and magnetic properties of Co1 – xCuxFe2O4 nanoparticles. Mater. Res. Express. 6, 15023 (2019)CrossRefGoogle Scholar
  7. 7.
    L.D. Tung, V.L. Kolesnichenko, D. Caruntu, N.H. Chou, C.J. O’Connor, C.J.L. Spinu, Magnetic properties of ultrafine cobalt ferrite particles. J. Appl. Phys. 93, 7486–7488 (2003)CrossRefGoogle Scholar
  8. 8.
    A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Five-component domino synthesis of tetrahydropyridines using hexagonal PbCrxFe12–xO19 as efficient magnetic nanocatalyst. Res. Chem. Intermediat. 43, 6155–6165 (2017)CrossRefGoogle Scholar
  9. 9.
    A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Sonication method synergism with rare earth based nanocatalyst: preparation of NiFe2 – xEuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation. J. Rare Earths 35, 374–381 (2017)CrossRefGoogle Scholar
  10. 10.
    J. Amighian, M. Mozaffari, B. Nasr, Preparation of nano-sized manganese ferrite (MnFe2O4) via co-precipitation method. Phys. Status Solidi C 3, 3188–3192 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Uday Bhasker et al., Preparation and characterization of cobalt magnesium nano ferrites using auto-combustion method. Adv. Mater. Res. 584, 280–284 (2012)CrossRefGoogle Scholar
  12. 12.
    N. Ranvah, Y. Melikhov, I.C. Nlebedim, D.C. Jiles, J.E. Snyder, A.J. Moses, P.I. Williams, Temperature dependence of magnetic anisotropy of germanium/cobalt cosubstituted cobalt ferrite. J. Appl. Phys. 105, 5181–5183 (2009)CrossRefGoogle Scholar
  13. 13.
    J.A. Paulsen, C.C.H. Lo, J.E. Snyder, A.P. Ring, L.L. Jones, D.C. Jiles, Study of the curie temperature of cobalt ferrite based composites for stress sensor applications. IEEE. Trans. Magn. 39, 3316–3318 (2003)CrossRefGoogle Scholar
  14. 14.
    M. Srivastava, A.K. Ojha, S. Chaubey, P.K. Sharma, A.C. Pandey, Influence of pH on structural morphology and magnetic properties of ordered phase cobalt doped lithium ferrites nanoparticles synthesized by sol–gel method. Sci. Eng. B. 175, 14–21 (2010)CrossRefGoogle Scholar
  15. 15.
    A.T. Raghavendar, D. Pajic, K. Zadro, T. Milekovic, P.V. Rao, K.M. Jadhav, D. Ravinder, Synthesis and magnetic properties of NiFe2–xAlxO4 nanoparticles. J. Magn. Magn. Mater. 316, 1–7 (2007)CrossRefGoogle Scholar
  16. 16.
    J. Jing, L. Liangchao, X. Feng, Structural analysis and magnetic properties of Gd-doped Li–Ni ferrites prepared using rheological phase reaction. J. Rare Earths 25, 79–83 (2007)CrossRefGoogle Scholar
  17. 17.
    G. Chandrasekaran, S. Selvandan, K. Manivannane, Electrical and FTIR studies on Al substituted Mn–Zn mixed ferrites. J. Mater. Sci. Mater. Electron. 15, 15–18 (2004)CrossRefGoogle Scholar
  18. 18.
    S. Anjum, A. Rashid, F. Bashir, S. Riaz, M. Pervaiz, R. Zia, Effect of Cu-doped nickel ferrites on structural, magnetic, and dielectric properties. Mater. Today Proc. 2, 5559–5567 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, ZnFe2–xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26, 9776–9781 (2015)CrossRefGoogle Scholar
  20. 20.
    K. Siraj, M. Khaleeq-ur-Rahman, S.I. Hussain, M.S. Rafique, S. Anjum, Effect of deposition temperature on structural, surface, optical and magnetic properties of pulsed laser deposited Al-doped CdO thin films. J. Alloys Compd. 509, 6756–6762 (2011)CrossRefGoogle Scholar
  21. 21.
    R. Arulmurugan, B. Jeyadevan, G. Vaidyanathan, S. Sendhilnathan, Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by coprecipitation. J. Magn. Magn. Mater. 288, 470–477 (2005)CrossRefGoogle Scholar
  22. 22.
    K. Praveena, B. Radhika, S. Srinath, Dielectric and magnetic properties of NiFe2–xBixO4 nanoparticles at microwave frequencies prepared via co-precipitation method. Procedia Eng. 76, 1–7 (2014)CrossRefGoogle Scholar
  23. 23.
    I.P. Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322, 767–776 (2010)CrossRefGoogle Scholar
  24. 24.
    H.M. Zaki, H.A. Dawoud, Far-Infrared spectra for copper–zinc mixed ferrites. Physica B. 405, 4476–4479 (2010)CrossRefGoogle Scholar
  25. 25.
    R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, Low temperature synthesis of nano crystalline Dy3+ doped cobalt ferrite: structural and magnetic properties. J. Appl. Phys. 110, 535 (2011)CrossRefGoogle Scholar
  26. 26.
    M. Srivastava, S. Chaubey, A.K. Ojha, Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol-gel and hydrothermal methods. Mater. Chem. Phys. 118, 174–180 (2009)CrossRefGoogle Scholar
  27. 27.
    Z. Yang, Z. Ye, Z. Xu, B. Zhao, Effect of the morphology on the optical properties of ZnO nanostructures. Physica E. 42, 116–119 (2010)CrossRefGoogle Scholar
  28. 28.
    A. Gholizadeh, E. Jafari, Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni–Cu–Zn ferrite nano-particles: magnetic enhancement by a reducing atmosphere. J. Magn. Magn. Mater. 422, 328–336 (2017)CrossRefGoogle Scholar
  29. 29.
    M.M. Eltabey, K.M. El-Shokrofy, S.A. Gharbia, Enhancement of the magnetic properties of Ni–Cu–Zn ferrites by the non-magnetic Al3+-ions substitution. J. Alloys Compd. 509, 2473–2477 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci. Mater. Electron. 27, 11691–11697 (2016)CrossRefGoogle Scholar
  31. 31.
    K. Nakamoto, Infrared and raman spectra of inorganic and coordination compounds, part A and part B, Two Volume Set, 6th edn. Sex. Transm. Infect. 85, 182–186 (2008)Google Scholar
  32. 32.
    U.B. Gawas, V.M.S. Verenkar, S.R. Barman, S.S. Meena, P. Bhatt, Synthesis of nanosize and sintered Mn0.3Ni0.3Zn0.4Fe2O4 ferrite and their structural and dielectric studies. J. Alloys Compd. 555, 225–231 (2013)CrossRefGoogle Scholar
  33. 33.
    R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina et al., Structural, dielectric, electrical and magnetic properties of CuFe2O4 nanoparticles synthesized by honey mediated sol–gel combustion method and annealing effect. J. Mater. Sci. Mater. Electron. 28, 6245–6261 (2017)CrossRefGoogle Scholar
  34. 34.
    R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, L. Kalina et al., Influence of La3+ on structural, magnetic, dielectric, electrical and modulus spectroscopic characteristics of single phase CoFe2–xLaxO4 nanoparticles. J. Mater. Sci. Mater. Electron. 28, 9139–9154 (2017)CrossRefGoogle Scholar
  35. 35.
    Y. Kang, L. Wang, Y. Wang, H. Zhang, Y. Wang, D. Hong, Y. Qv, S. Wang, Construction and enhanced gas sensing performances of CuO-modified α-Fe2O3 hybrid hollow spheres. Sensors Actuators B. 177, 570–576 (2013)CrossRefGoogle Scholar
  36. 36.
    L. Zhang, J. Zhao, H. Lu, L. Gong, L. Li, J. Zheng, H. Li, Z. Zhu, High sensitive and selective formaldehyde sensors based on nanoparticle-assembled ZnO micro-octa-hedrons synthesized by homogeneous precipitation method. Sensors Actuators B. 160, 364–370 (2011)CrossRefGoogle Scholar
  37. 37.
    S. Singhal, S. Jauhar, N. Lakshmi, S. Bansal, Mn3+ substituted Co-Cd ferrites, CoCd0.4MnxFe1.6–xO4 (0.1 ≤ x ≤ 0.6): cation distribution, structural, magnetic and electrical properties. J. Mol. Struct. 1038, 45–51 (2013)CrossRefGoogle Scholar
  38. 38.
    A. Miller, Distribution of cations in spinels. J. Appl. Phys. 30, S24–S25 (1959)CrossRefGoogle Scholar
  39. 39.
    S. Singhal, S. Jauhar, Investigation of structural, magnetic, electrical and optical properties of chromium substituted cobalt ferrites (CoCrxFe2–xO4, 0 ≤ x ≤ 1) synthesized using sol gel auto combustion method. J. Mol. Struct. 1012, 182–188 (2012)CrossRefGoogle Scholar
  40. 40.
    S. Singhal, S.K. Barthwal, K. Chandra, XRD, magnetic and mössbauer spectral studies of nano size aluminum substituted cobalt ferrites (CoAlxFe2–xO4). J. Magn. Magn. Mater. 306, 233–240 (2006)CrossRefGoogle Scholar
  41. 41.
    A.V. Raut, R.S. Barkule, D.R. Shengule, K.M. Jadhav, Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol-gel auto-combustion technique. J. Magn. Magn. Mater. 358, 87–92 (2014)CrossRefGoogle Scholar
  42. 42.
    T. Ibusuki, S. Kojima, O. Kitakami, Y. Shimada, Magnetic anisotropy and behaviors of Fe nanoparticles. IEEE. Trans. Magn. 37, 2223–2225 (2001)CrossRefGoogle Scholar
  43. 43.
    L. Néel, Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys. 3, 137–198 (1948)CrossRefGoogle Scholar
  44. 44.
    N.K. Dung, N.H. Tuan, The effect of cobalt substitution on structure and magnetic properties of nickel ferrite. J. Sci. Math. Phys. 25, 153–159 (2009)Google Scholar
  45. 45.
    S. Bhukal, T. Namgyal, S. Mor, S. Bansal, S. Singhal, Structural, electrical, optical and magnetic properties of chromium substituted Co-Zn nanoferrites Co0.6Zn0.4CrxFe2–xO4 (0 ≤ x ≤ 1.0) prepared via sol–gel Au-to-combustion method. J. Mol. Struct. 1012, 162–167 (2012)CrossRefGoogle Scholar
  46. 46.
    J.S. Smart, The Néel theory of ferrimagnetism. Am. J. Phys. 23, 356–370 (2005)CrossRefGoogle Scholar
  47. 47.
    P.A. Shaikh, R.C. Kambale, A.V. Rao, Y.D. Kolekar, Effect of Ni doping on structural and magnetic properties of Co1–xNixFe1.9Mn0.1O4. J. Magn. Magn. Mater. 322, 718–726 (2010)CrossRefGoogle Scholar
  48. 48.
    J.M.D. Coey, Rare earth-iron permanent magnets. ChemInform. 23 (2010).

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiaoguang Pan
    • 1
  • Aimin Sun
    • 1
    • 2
    Email author
  • Yingqiang Han
    • 1
  • Wei Zhang
    • 1
  • Xiqian Zhao
    • 1
  1. 1.College of Physics and Electronics EngineeringNorthwest Normal UniversityLanzhouChina
  2. 2.Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu ProvinceCollege of Physics and Electronics Engineering, Northwest Normal UniversityLanzhouChina

Personalised recommendations