Band gap engineering, electronic state and local atomic structure of Ni doped CeO2 nanoparticles

  • Kavita Kumari
  • Rezq Naji Aljawfi
  • Ankush Vij
  • K. H. Chae
  • Mohd. Hashim
  • P. A. Alvi
  • Shalendra KumarEmail author


In cerium dioxide (CeO2) as semiconductor compound, the tuning of band gap energy is a pivotal feature for visible light applications. In this report, nanoparticles (NPs) of Ce1 − xNixO2 (0.0 ≤ x ≤ 0.10) were synthesized through co-precipitation route. The structural, electronic state and optical band gap were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, Raman scattering and UV–Vis spectroscopy. XRD results revealed the single-phase nanocrystalline behavior of CeO2 with cubic fluorite structure. The electronic configuration of the samples, probed via NEXAFS spectra at Ce M5, 4 edges, demonstrated that the cerium exists in Ce4+ and Ce3+ mixed valence states. The formation of Ce3+ ions in the vicinity of oxygen vacancies (Ov) were assessed also via Raman scattering and XANES spectra at Ce L3 edge. The estimated concentrations of Ce3+ were increased from 6 to 13% as the Ni content increase from 0 to 10% respectively. Here, the inclusion of Ni2+ ions into CeO2 network induced additional Ov and simultaneously reduced the optical band gap from 3.9 eV for pure CeO2 to 2.6 eV for 10% Ni doped CeO2 NPs. Therefore, the oxygen loss population seem to be responsible for the band gap reduction. The role of Ov for creating profound donor band near the conduction band and narrowing the band gap energy were discussed.



One of the author (Shalendra Kumar) would like to thank the Department of Science and Technology, New Delhi (Grant No. YSS/2015/001262) for financial support.


  1. 1.
    A. Gupta, M.S. Hegde, K.R. Priolkar, U.V. Waghmare, P.R. Sarode, S. Emura, Chem. Mater. 21, 5836 (2009)CrossRefGoogle Scholar
  2. 2.
    G. Dutta, U.V. Waghmare, T. Baidya, M.S. Hegde, K.R. Priolkar, P.R. Sarode, Catal. Lett. 108, 165 (2006)CrossRefGoogle Scholar
  3. 3.
    T. Masui, K. Fujiwara, K. Machida, G. Adachi, T. Sakata, H. Mori, Chem. Mater. 9, 2197 (1997)CrossRefGoogle Scholar
  4. 4.
    S. Kumar, S. Gautam, T.K. Song, K.H. Chae, K.W. Jang, S.S. Kim, J. Alloys Compd. 611, 329 (2014)CrossRefGoogle Scholar
  5. 5.
    M.I.B. Bernardi, A. Mesquita, F. Be´ron, K. R. Pirota, A. O. de Zevallos, A.C. Doriguettod, H.B. de Carvalho, Phys. Chem. Chem. Phys., 17, 3072 (2015).CrossRefGoogle Scholar
  6. 6.
    H. Shi, T. Hussain, R. Ahuja, T.W. Kang, W. Luo, Sci. Rep. 6, 31345 (2016)CrossRefGoogle Scholar
  7. 7.
    W.-C. Wang, S.-Y. Chen, P.-A. Glans, J. Guo, R.-J. Chen, K.-W. Fong, C.-L. Chen, A. Gloter, C.-L. Chang, T.-S. Chan, J.-M. Chen, J.-F. Lee, C.-L. Dong, Phys. Chem. Chem. Phys. 15, 14701 (2013)CrossRefGoogle Scholar
  8. 8.
    T.S. Wu, Y.W. Chen, S.C. Weng, C.N. Lin, C.H. Lai, Y.J. Huang, H.T. Jeng, S.L. Chang, Y.L. Soo, Sci. Rep. 7, 4715 (2017)CrossRefGoogle Scholar
  9. 9.
    L. Yue, X.M. Zhang, J. Alloys Compd. 475, 702 (2009)CrossRefGoogle Scholar
  10. 10.
    M.S. Anwar, S. Kumar, N. Arshi, F. Ahmed, Y.J. Seo, C.G. Lee, B.H. Koo, J. Alloys Compd. 509, 4525 (2011)CrossRefGoogle Scholar
  11. 11.
    M.A.M. Khan, W. Khan, M. Ahamed, A.N. Alhazaa, Sci. Rep. 7, 12560 (2017)CrossRefGoogle Scholar
  12. 12.
    P.C.A. Brito, D.A.A. Santos, J.G.S. Duque, M.A. Macêdo, Physica B 405, 1821 (2010)CrossRefGoogle Scholar
  13. 13.
    M. Nolan, V.S. Verdugo, H. Metiu, Surf. Sci. 602, 2734 (2008)CrossRefGoogle Scholar
  14. 14.
    V. Shapovalov, H. Metiu, J. Catal. 245, 205 (2007)CrossRefGoogle Scholar
  15. 15.
    N.V. Skorodumova, S.I. Simak, B.I. Lundqvist, I.A. Abrikosov, B. Johansson, Phys. Rev. Lett. 89, 166601 (2002)CrossRefGoogle Scholar
  16. 16.
    K.S. Ranjith, P. Saravanan, S.-H. Chen, C.-L. Dong, C.L. Chen, S.-Y. Chen, K. Asokan, R.T. Rajendra Kumar, J. Phys. Chem. C 118, 27039 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Soni, S. Kumar, B. Dalela, S. Kumar, P.A. Alvi, S. Dalela, J. Alloys Compd. 752, 520 (2018)CrossRefGoogle Scholar
  18. 18.
    A. Thurber, K.M. Reddy, V. Shutthanandan, M.H. Engelhard, C. Wang, J. Hays, A. Punnoose, Phys. Rev. B 76, 165206 (2007)CrossRefGoogle Scholar
  19. 19.
    S.K. Alla, R.K. Mandal, N.K. Prasad, RSC Adv. 6, 103491 (2016)CrossRefGoogle Scholar
  20. 20.
    J.E. Spanier, R.D. Robinson, F. Zhang, S.-W. Chan, I.P. Herman, Phys. Rev. B 64, 245407 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electronic Materials & Nanomagnetism Lab, Department of Applied Physics, Amity School of Applied SciencesAmity University HaryanaGurgaonIndia
  2. 2.Department of PhysicsIbb UniversityIbbYemen
  3. 3.Advanced Analysis CenterKorea Institute of Science and TechnologySeoulRepublic of Korea
  4. 4.Department of Applied PhysicsAligarh Muslim UniversityAligarhIndia
  5. 5.Department of PhysicsBanasthali UniversityBanasthaliIndia

Personalised recommendations