Advertisement

N-doped hard carbon ultrathin film-coated Fe1−xS nanoparticles with multi-morphologies for cheap Li ion battery anodes

  • Zhenzhen YanEmail author
  • Wen HeEmail author
  • Xudong ZhangEmail author
  • Xuena Yang
  • Yaoyao Wang
  • Xian Zhang
  • Youxin Lou
  • Guogang Xu
Article
  • 35 Downloads

Abstract

The lithium storage performance and bioimaging of metal sulfides are restricted by their intrinsic poor conductivity, large volumetric expansion and toxicity. Here we report a new strategy to solve these problems by coating pyrrhotite (Fe1−xS) (FS) nanoparticles with N-doped hard carbon ultrathin film (N-HCUF). The porous nanocomposites with multilevel structures have been synthesized by using petrochemical waste water (PWW) as the organic ligands of iron metal–organic frameworks (Fe-MOFs) precursor and the sources of sulfur, nitrogen and carbon. We have clarified the formation mechanism and the influences of wash and calcination temperature on the structural composition, electrochemical and luminescence properties of the nanocomposites. As a novel anode for lithium ion batteries (LIBs), the FS/N-HCUF-700S exhibits high initial discharge capacity of 1542.08 mAh g−1 at a current density of 0.1 A g−1 and the discharge specific capacity becomes stable at 632.16 mAh g−1 after 200 cycles; Meanwhile, the Li+ storage mechanism in the as-prepared samples has also been investigated. More importantly, FS/N-HCUF-700S exhibits strong yellow-fluorescent emission at 614 nm, which is particularly important for bioimaging. Last, the removal efficiency of chemical oxygen demand of PWW is up to 80.7% during the synthesis process.

Notes

Acknowledgements

The authors thank National Natural Science Foundation of China (Grant Nos. 51672139, 51472127 and 51272144) and Taishan Scholars Project Special Funds for the financial support. They also thank the Projects Supported by the Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education (No. KF2016-22).

Supplementary material

10854_2019_742_MOESM1_ESM.doc (1.9 mb)
Supplementary material 1 (DOC 1942 KB)

References

  1. 1.
    X. Yi, W. He, X. Zhang, Y.Z. Yue, G. Yang, Z. Wang, M. Zhou, L. Wang, Graphene-like carbon sheet/Fe3O4 nanocomposites derived from soda papermaking black liquor for high performance lithium ion batteries. Electrochim. Acta 232, 550–560 (2017)CrossRefGoogle Scholar
  2. 2.
    Z. Wang, W. He, X. Zhang, Y.Z. Yue, J.H. Liu, C.J. Zhang, L.Y. Fang, Multilevel structures of Li3V2(PO4)3/phosphorus-doped carbon nanocomposites derived from hybrid V-MOFs for long-life and cheap lithium ion battery cathodes. J. Power Sources 366, 9–17 (2017)CrossRefGoogle Scholar
  3. 3.
    M.A.P. Cechinel, D.A. Mayer, T.A. Pozdniakova, L.P. Mazur, R.A.R. Boaventura, A. Augusto, U. de Souza, S.M.A. Guelli, U. Souza, V.J.P. Vilar, Removal of metal ions from a petrochemical wastewater using brown macro-algae as natural cation-exchangers. Chem. Eng. J. 286, 1–15 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Mohammadi, A. Kargari, H. Sanaeepur, K. Abbassian, A. Najafi, E. Mofarrah, Phenol removal from industrial wastewaters: a short review, Desalin. Water Treat 53, 2215–2234 (2015)CrossRefGoogle Scholar
  5. 5.
    R. Crisafully, M.A.L. Milhome, R.M. Cavalcante, E.R. Silveira, D.D. Keukeleire, R.F. Nascimento, Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Biores. Technol. 99, 4515–4519 (2008)CrossRefGoogle Scholar
  6. 6.
    L. Wang, S. Barrington, J.W. Kim, Biodegradation of pentyl amine and aniline from petrochemical wastewater. J. Environ. Manage. 83, 191–197 (2007)CrossRefGoogle Scholar
  7. 7.
    F. Ma, J. Guo, L. Zhao, C. Chang, D. Cui, Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater. Biores. Technol. 100, 597–602 (2009)CrossRefGoogle Scholar
  8. 8.
    S. Verma, B. Prasad, I.M. Mishra, Pretreatment of petrochemical wastewater by coagulation and flocculation and the sludge characteristics. J. Hazard. Mater. 178, 1055–1064 (2010)CrossRefGoogle Scholar
  9. 9.
    H. Zhang, Y. He, T. Jiang, F. Yang, Research on characteristics of aerobic granules treating petrochemical wastewater by acclimation and co-metabolism methods. Desalination 279, 69–74 (2011)CrossRefGoogle Scholar
  10. 10.
    J.R. Dahn, T. Zheng, Y.H. Liu, J.S. Xue, Mechanisms for lithium insertion in carbon aceous material. Science 270, 590–593 (1995)CrossRefGoogle Scholar
  11. 11.
    L.F. Xiao, H.Y. Lu, Y.J. Fang, M.L. Sushko, Y.L. Cao, X.P. Ai, H.X. Yang, J. Liu, Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv. Energy Mater. 8, 1703238 (2018)CrossRefGoogle Scholar
  12. 12.
    M. Hara, A. Satoh, N. Takami, T. Ohsaki, Structural and electrochemical properties of lithiated polymerized aromatics. Anodes for lithium-ion cells. J. Phys. Chem. 99, 16338–16343 (1995)CrossRefGoogle Scholar
  13. 13.
    Y.M. Li, Y.S. Hu, H. Li, L.Q. Chen, X.J. Huang, A superior low-cost amorphous carbon anode made from pitch and lignin for sodiumion batteries. J. Mater. Chem. A 4, 96–104 (2016)CrossRefGoogle Scholar
  14. 14.
    P.Y. Zhao, J.J. Tang, C.Y. Wang, A low-cost attempt to improve electrochemical performances of pitch-based hard carbon anodes in lithium-ion batteries by oxidative stabilization. J. Solid State Electrochem. 21, 555–562 (2016)CrossRefGoogle Scholar
  15. 15.
    J.F. Ni, Y.Y. Huang, L.J. Gao, A high-performance hard carbon for Li-ion batteries and supercapacitors application. J. Power Sources 223, 306–311 (2013)CrossRefGoogle Scholar
  16. 16.
    R. Mo, D. Rooney, K. Sun, H.Y. Yang, 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat. Commun. 8, 13949 (2017)CrossRefGoogle Scholar
  17. 17.
    L. Wang, C.L. Yang, S. Dou, S.Y. Wang, J.T. Zhang, X. Gao, J.M. Ma, Y. Yu, Nitrogen-doped hierarchically porous carbon networks:synthesis and applications in lithium-ion battery, sodium-ion battery and zinc-air battery. Electrochimi. Acta 219, 592–603 (2016)CrossRefGoogle Scholar
  18. 18.
    H.C. Yu, X.L. Dong, Y. Pang, Y.G. Wang, Y.Y. Xia, High power lithium-ion battery based on spinel cathode and hard carbon anode. Electrochim. Acta 228, 251–258 (2017)CrossRefGoogle Scholar
  19. 19.
    R. Vali, A. Janes, T. Thomberg, E. Lust, Synthesis and characterization of d-glucose derived nanospheric hard carbon negative electrodes for lithium-ion and sodium-ion batteries. Eectrochim. Acta 253, 536–544 (2017)CrossRefGoogle Scholar
  20. 20.
    X. Xiong, W. Luo, X. Hu, C. Chen, L. Qie, D. Hou, Y. Huang, Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries. Sci. Rep. 5, 9254 (2015)CrossRefGoogle Scholar
  21. 21.
    C. Liang, M. Gao, H. Pan, Y. Liu, M. Yan, Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. J. Alloys Comp. 575, 246–256 (2013)CrossRefGoogle Scholar
  22. 22.
    J.W. Wang, X.H. Liu, S.X. Mao, J.Y. Huang, Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 12, 5897–5902 (2012)CrossRefGoogle Scholar
  23. 23.
    X.Y. Zhang, J.Y. Xiang, C.P. Mu, F.S. Wen, S.J. Yuan, J. Zhao, D.Y. Xu, C. Su, Z.Y. Liu, SnS2 nanoflakes anchored graphene obtained by liquid phase exfoliation and MoS2 nanosheet composites as lithium and sodium battery anodes. Eectrochim. Acta 227, 203–209 (2017)CrossRefGoogle Scholar
  24. 24.
    W.N. Ren, H.F. Zhang, C. Guan, C.W. Cheng, Ultrathin MoS2 nanosheets@metal organic framework derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv. Funct. Mater. 32, 1702116 (2017)CrossRefGoogle Scholar
  25. 25.
    Z.M. Wang, G. Wei, K. Ozawa, Y.L. C, Z.X. C, H. Kimura, Nanoporous MoS2/C composites for high performance lithium ion battery anode material. Electrochim. Acta 239, 74–83 (2017)CrossRefGoogle Scholar
  26. 26.
    Y. Ren, J. Wang, X. Huang, J. Ding, Three-dimensional SnS2 flowers/carbon nanotubes network: extraordinary rate capacity for sodium-ion batters. Mater. Lett. 186, 57–61 (2017)CrossRefGoogle Scholar
  27. 27.
    D.S. Guan, L.L. Ma, D.P. Pan, J.Y. Li, X.F. Gao, Y.Y. Xie, M. Qiu, C. Yuan, Atomic layer deposition of alumina coatings onto SnS2 for lithium-ion battery applications. Electrochim. Acta 242, 117–124 (2017)CrossRefGoogle Scholar
  28. 28.
    Y.Y. Chen, B.J. Wang, T.Y. Hou, X.D. Hu, X. Li, X.H. Sun, S. Cai, H.M. Ji, C.M. Zheng, Enhanced electrochemical performance of SnS nanoparticles/CNTs composite as anode material for sodium-ion battery. Chin. Chem. Lett. 29, 187–190 (2018)CrossRefGoogle Scholar
  29. 29.
    C. Xia, F. Zhang, H.F. Liang, H.N. Alshareef, Layered SnS sodium ion battery anodes synthesized near room temperature. Nano Res. 10, 4368–4377 (2017)CrossRefGoogle Scholar
  30. 30.
    S.S. Yao, J. Cui, Z.H. Lu, Z.L. Xu, L. Qin, J.Q. Huang, Z. Sadighi, F. Ciucci, J.K. Kim, Unveiling the unique phase transformation behavior and sodiation kinetics of 1D van der waals Sb2S3 anodes for sodium ion batteries. Adv. Energy. Mater. 7, 1602149 (2017)CrossRefGoogle Scholar
  31. 31.
    J.B. Li, D. Yan, X.J. Zhang, S.J. Hou, D.S. Li, T. Lu, Y.F. Yao, L.K. Pan, In situ growth of Sb2S3 on multiwalled carbon nanotubes as high-performance anode materials for sodium-ion batteries. Electrochim. Acta 228, 436–446 (2017)CrossRefGoogle Scholar
  32. 32.
    F.M. Wu, X.M. Guo, M. Li, H. Xu, One-step hydrothermal synthesis of Sb2S3/reduced graphene oxide nanocomposites for high-performance sodium ion batteries anode materials. Ceram. Inter. 43, 6019–6023 (2017)CrossRefGoogle Scholar
  33. 33.
    S.H. Dong, C.X. Li, X.L. Ge, Z.Q. Li, X.G. Miao, L.W. Yin, ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal–organic framework as anodes for high performance sodium ion batteries. ACS Nano 11, 6474–6482 (2017)CrossRefGoogle Scholar
  34. 34.
    Y.F. Yao, Y.H. Zhu, J.F. Huang, J.H. Shen, C.Z. Li, Porous CoS nanosheets coated by N and S doped carbon shell on graphene foams for free-standing and flexible lithium ion battery anodes: influence of void spaces, shell and porous nanosheet. Electrochim. Acta 271, 242–251 (2018)CrossRefGoogle Scholar
  35. 35.
    L.M. Zhou, K. Zhang, J.Z. Sheng, Q.Y. An, Z.L. Tao, Y.M. Kang, L.Q. Mai, Structural and chemical synergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy 35, 281–289 (2017)CrossRefGoogle Scholar
  36. 36.
    S. Xie, Y.F. Deng, J. Mei, Z.T. Yang, W.M. Lau, H. Liu, Carbon coated CoS2 thermal battery electrode material with enhanced discharge performances and air stability. Electrochim. Acta 231, 287–293 (2017)CrossRefGoogle Scholar
  37. 37.
    K. Liang, K. Marcus, S.F. Zhang, L. Zhou, Y.L. Li, S.T.D. Oliveira, N. Orlovskaya, Y.H. Sohn, Y. Yang, NiS2/FeS holey film as freestanding electrode for high-performance lithium battery. Adv. Energy Mater. 7, 1701309 (2017)CrossRefGoogle Scholar
  38. 38.
    S.H. Chen, L. Fan, L.L. Xu, Q. Liu, Y. Qin, B.A. Lu, 100 K cycles: core-shell H-FeS@C based lithium-ion battery anode. Energy Storage Mater. 8, 20–27 (2017)CrossRefGoogle Scholar
  39. 39.
    C. Wang, Y. Niu, J. Jiang, Y.D. Chen, H.Q. Tian, R. Zhang, T. Zhou, J.F. X, Y. Pan. S.Y. Wang, Hybrid thermoelectric battery electrode FeS2 study. Nano Energy 45, 432–438 (2018)CrossRefGoogle Scholar
  40. 40.
    C. Wang, M. Lan, Y. Zhang, H. Bian, M. Yune, K. Ostrikov, J.J. Jiang, Y.Y. Li, J. Lu, Fe1 – xS/C nanocomposites from sugarcane waste-derived microporous carbon for high-performance lithium ion batteries. Green Chem. 18, 3029–3039 (2016)CrossRefGoogle Scholar
  41. 41.
    X. Xu, Z. Meng, X.L. Zhu, S.L. Zhang, W.Q. Han, Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery. J. Power Source 380, 12–17 (2018)CrossRefGoogle Scholar
  42. 42.
    W. Ma, X. Liu, X. Lei, Z. Yuan, Y. Ding, X. Liu, Micro/nano-structured FeS2 for high energy efficiency rechargeable Li-FeS2 battery. Chem. Eng. J. 334, 725–731 (2018)CrossRefGoogle Scholar
  43. 43.
    L. Lia, S. Peng, N. Bucher, H.Y. Chen, N. Shen, A. Nagasubramanian, E. Eldho, S. Hartung, S. Ramakrishna, M. Srinivasan, Large-scale synthesis of highly uniform Fe1–xS nanostructures as a high-rate anode for sodium ion batteries. Nano Energy 37, 81–89 (2017)CrossRefGoogle Scholar
  44. 44.
    J. Xiao, Y. Xia, C. Hu, J. Xi, S. Wang, Raisin bread-like iron sulfides/nitrogen and sulfur dual-doped mesoporous graphitic carbon spheres: a promising electrocatalyst for the oxygen reduction reaction in alkaline and acidic media. J. Mater. Chem. A 5, 11114–11123 (2017)CrossRefGoogle Scholar
  45. 45.
    E.F. Wesp, W.R. Brode, The absorption spectra of ferric compounds. I. The ferric chloride-phenol reaction. J. Am. Chem. Soc. 56, 1037–1042 (1934)CrossRefGoogle Scholar
  46. 46.
    S.K. Larsen, B.G. Jenkins, N.G. Memon, R.B. Lauffer, Structure-affinity relationships in the binding of unsubstituted iron phenolate complexes to human serum albumin. Molecular structure of iron(III) N,N’-bis(2-hydroxybenzyl)ethylenediamine-N,N’-diacetate Inorg. Chem. 29, 1147–1152 (1990)Google Scholar
  47. 47.
    S. Soloway, S.H. WilenImproved, Improved ferric chloride test for phenols. Anal. Chem. 24, 979–983 (1952)CrossRefGoogle Scholar
  48. 48.
    S. Hao, B. Zhang, Y. Wang, C. Li, J. Feng, S. Ball, M. Srinivasan, J. Wu, Y. Huang, Hierarchical three-dimensional Fe3O4@porous carbon matrix/graphene anodes for high performance lithium ion batteries. Electrochim. Acta 260, 965–973 (2018)CrossRefGoogle Scholar
  49. 49.
    C. Zhang, W. Hu, H. Jiang, J.K. Chang, M. Zheng, Q.H. Wu, Q. Dong, Electrochemical performance of MIL-53(Fe)@RGO as an organic anode Material for Li-ion batteries. Electrochim. Acta 246, 528–535 (2017)CrossRefGoogle Scholar
  50. 50.
    W. He, X.D. Zhang, C. Jin, Y.Y. Wang, S. Mossin, Y.Z. Yue, Nano-glass ceramic cathodes for Li+/Na+ mixed-ion batteries. J. Power Sources 342, 717–725 (2017)CrossRefGoogle Scholar
  51. 51.
    Z.Y. Wang, W. He, X.D. Zhang, Y.Z. Yue, G.H. Yang, X.L. Yi, Y.Y. Wang, J.C. Wang, Li2NaV2(PO4)3/hard carbon nanocomposite cathodes for high-peformance Li-and-Na Ion batteries. ChemElectroChem 4, 671–678 (2017)CrossRefGoogle Scholar
  52. 52.
    C. Wang, Y. Zhang, W. He, X. Zhang, G. Yang, Z. Wang, M. Ren, L. Wang, Na-doped C70 fullerene/N-doped graphene/Fe-based quantum dot nanocomposites for sodium-ion batteries with ultrahigh coulombic efficiency. ChemElectroChem 5, 129–136 (2018)CrossRefGoogle Scholar
  53. 53.
    S. Mukherjee, D.A. Cullen, S. Karakalos, K. Liu, H. Zhang, S. Zhao, H. Xu, K. L.More, G. Wang, G. Wu, Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy 48, 217–226 (2018)CrossRefGoogle Scholar
  54. 54.
    I. Izanzar, M. Dahbi, M. Kiso, S. Doubaji, S. Komaba, I. Saadoune, Hard carbons issued from date palm as efficient anode materials for sodium-ion batteries. Carbon 137, 165–173 (2018)CrossRefGoogle Scholar
  55. 55.
    J. Wang, H.H. Wu, D.F. Gao, S. Miao, G.X. Wang, X.H. Bao, High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery. Nano Energy 13, 387–396 (2015)CrossRefGoogle Scholar
  56. 56.
    K. Chen, Z.H. Sun, R.P. Fang, Y. Shi, H.M. Cheng, F. Li, Metal–organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium–sulfur batteries. Adv. Funct. Mater. 28, 1707592 (2018)CrossRefGoogle Scholar
  57. 57.
    Y.F. Zhang, A.Q. Pan, L. Ding, Z.L. Zhou, Y.P. Wang, S.Y. Niu, S.Q. Liang, G.Z. Cao, Nitrogen-doped yolk-shell-structured CoSe/C dodecahedra for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 9, 3624–3633 (2017)CrossRefGoogle Scholar
  58. 58.
    C.H. Zhang, L. Fu, N. Liu, M.H. Liu, Y.Y. Wang, Z.F. Liu, Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv. Mater. 8, 1020–1024 (2011)CrossRefGoogle Scholar
  59. 59.
    J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590–593 (1995)CrossRefGoogle Scholar
  60. 60.
    Z. Liu, T. Lu, T. Song, X.-Y. Yu, X.W.D. Lou, U. Paik, Structure-designed synthesis of FeS2@C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 10, 1576–1580 (2017)CrossRefGoogle Scholar
  61. 61.
    F. Bu, P. Xiao, J. Chen, M.F.A. Abound, I. Shakir, Y. Xu, Rational design of three-dimensional graphene encapsulated core–shell FeS@carbon nanocomposite as a flexible high-performance anode for sodium-ion batteries. J. Mater. Chem. A 6, 6414–6421 (2018)CrossRefGoogle Scholar
  62. 62.
    Q. Ma, H. Song, Q. Zhuang, J. Liu, Z. Zhang, C. Mao, H. Peng, G. Li, K. Chen, Iron-nitrogen-carbon species boosting fast conversion kinetics of Fe1–xS@C nanorods as high rate anodes for lithium ion batteries. Chem. Eng. J. 338, 726–733 (2018)CrossRefGoogle Scholar
  63. 63.
    L. Li, A.R.O. Raji, J.M. Tour, Graphene-wrapped MnO2-graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv. Mater. 25, 6298–6302 (2013)CrossRefGoogle Scholar
  64. 64.
    S. Mlowe, N.S.E. Osman, T. Moyo, B. Mwakikunga, N. Revaprasadu, Structural and gas sensing properties of greigite (Fe3S4) and pyrrhotite (Fe1–xS) nanoparticles. Mater. Chem. Phys. 198, 167–176 (2017)CrossRefGoogle Scholar
  65. 65.
    Z.N. Guo, F. Sun, B. Han, K. Lin, L. Zhou, W. Yuan, Iron vacancy in tetragonal Fe1–xS crystals and its effect on the structure and superconductivity. Phys. Chem. Chem. Phys. 19, 9000–9006 (2017)CrossRefGoogle Scholar
  66. 66.
    J.J. Wang, X.L. Sun, Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ. Sci. 5, 5163–5185 (2012)CrossRefGoogle Scholar
  67. 67.
    S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots and polymer dots): current state and future perspective. Nano Res. 8, 355–381 (2015)CrossRefGoogle Scholar
  68. 68.
    L. Shi, L. Li, X. Li, G. Zhang, Y. Zhang, C. Dong, S. Shuang, Excitation-independent yellow-fluorescent nitrogen-doped carbon nanodots for biological imaging and paper-based sensing. Sens. Actuators B Chem. 251, 234–241 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Materials Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanPeople’s Republic of China
  2. 2.Institute of Materials Science and EngineeringShandong University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations