Advertisement

Fabrication of Na, Cl co-doped graphitic carbon nitride with enhanced photocatalytic activity for degradation of dyes and antibiotics

  • Kai-Li Wang
  • Yan Li
  • Tao Sun
  • Fang Mao
  • Ji-Kui Wu
  • Bin XueEmail author
Article
  • 17 Downloads

Abstract

Co-doping is a promising approach to change the electronic structure and increase the photocatalytic ability of graphitic carbon nitride (g-C3N4). Here, we reported a facile and green fabrication of Na, Cl co-doped g-C3N4 photocatalysts. In the fabrication, sodium and chlorine were incorporated into g-C3N4 synchronously. The bandgap of Na, Cl co-doped g-C3N4 decreased compared with pure g-C3N4 and the position of the valence band moved in the direction of enhanced oxidizing power. The co-doped photocatalysts exhibited the improved visible-light absorption and the reduced recombination rate of photogenerated electrons and holes. As a result, photocatalytic activity of Na, Cl co-doped g-C3N4 was remarkably improved for the photodegradation of rhodamine B and tetracycline hydrochloride under visible light irradiation. The photocatalysis mechanism of Na, Cl co-doped g-C3N4 was also discussed according to the results of active species trapping experiments.

Notes

Acknowledgements

B. X. acknowledges the financial support from Shanghai Ocean University (Project: A1-2801-18-10051006).

Supplementary material

10854_2019_733_MOESM1_ESM.pdf (38 kb)
Supplementary material 1 (PDF 38 KB)

References

  1. 1.
    S.M. Lam, J.C. Sin, A.R. Mohamed, Mater. Sci. Semicond. Process. 47, 62 (2016)CrossRefGoogle Scholar
  2. 2.
    J.Q. Wen, J. Xie, X.B. Chen, X. Li, Appl. Surf. Sci. 391, 72 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Ye, R. Wang, M.Z. Wu, Y.P. Yuan, Appl. Surf. Sci. 358, 15 (2015)CrossRefGoogle Scholar
  4. 4.
    G. Mamba, A.K. Mishra, Appl. Catal. B 198, 347 (2016)CrossRefGoogle Scholar
  5. 5.
    L. Shi, L. Liang, F.X. Wang, M.S. Liu, T. Liang, K.L. Chen, J. Sun, RSC Adv. 5, 63264 (2015)CrossRefGoogle Scholar
  6. 6.
    Z.J. Huang, F.B. Li, B.F. Chen, G.Q. Yuan, RSC Adv. 5, 14027 (2015)CrossRefGoogle Scholar
  7. 7.
    X.C. Gao, X.J. Jiao, L.C. Zhang, W.C. Zhu, X.H. Xu, H.Y. Ma, T. Chen, RSC Adv. 5, 76963 (2015)CrossRefGoogle Scholar
  8. 8.
    J.X. Xia, J.Z. Zhao, J. Chen, J. Di, M.X. Ji, L. Xu, Z.G. Chen, H.M. Li, J. Photochem. Photobiol. A 339, 59 (2017)CrossRefGoogle Scholar
  9. 9.
    Z. Zhu, Z.Y. Lu, D.D. Wang, X. Tang, Y.S. Yan, W.D. Shi, Y.S. Wang, N.L. Gao, X. Yao, H.J. Dong, Appl. Catal. B 182, 115 (2016)CrossRefGoogle Scholar
  10. 10.
    Q. Liu, Y.R. Guo, Z.H. Chen, Z.G. Zhang, X.M. Fang, Appl. Catal. B 183, 231 (2016)CrossRefGoogle Scholar
  11. 11.
    G.G. Zhang, Z.A. Lan, L.H. Lin, S. Lin, X.C. Wang, Chem. Sci. 7, 3062 (2016)CrossRefGoogle Scholar
  12. 12.
    Y.D. Li, Z.H. Ruan, Y.Z. He, J.Z. Li, K.Q. Li, Y.Q. Jiang, X.Z. Xu, Y. Yuan, K.F. Lin, Appl. Catal. B 236, 64 (2018)CrossRefGoogle Scholar
  13. 13.
    D. Masih, Y.Y. Ma, S. Rohani, Appl. Catal. B 206, 556 (2017)CrossRefGoogle Scholar
  14. 14.
    Y.R. Guo, Q. Liu, Z.H. Li, Z.G. Zhang, X.M. Fang, Appl. Catal. B 221, 362 (2018)CrossRefGoogle Scholar
  15. 15.
    J.D. Hu, D.Y. Chen, N.J. Li, Q.F. Xu, H. Li, J.H. He, J.M. Lu, Appl. Catal. B 236, 45 (2018)CrossRefGoogle Scholar
  16. 16.
    S. Acharya, S. Mansingh, K.M. Parida, Inorg. Chem. Front. 4, 1022 (2017)CrossRefGoogle Scholar
  17. 17.
    J.J. Tian, L.X. Zhang, M. Wang, X.X. Jin, Y.J. Zhou, J.J. Liu, J.L. Shi, Appl. Catal. B 232, 322 (2018)CrossRefGoogle Scholar
  18. 18.
    S. Patnaik, S. Martha, S. Acharya, K.M. Parida, Inorg. Chem. Front. 3, 336 (2016)CrossRefGoogle Scholar
  19. 19.
    L.B. Jiang, X.Z. Yuan, Y. Pan, J. Liang, G.M. Zeng, Z.B. Wu, H. Wang, Appl. Catal. B 217, 388 (2017)CrossRefGoogle Scholar
  20. 20.
    C.H. Lu, P. Zhang, S.J. Jiang, X. Wu, S.Q. Song, M.S. Zhu, Z.Z. Lou, Z. Li, F. Liu, Y.H. Liu, Y. Wang, Z.G. Le, Appl. Catal. B 200, 378 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Bellardita, E.I. García-López, G. Marcì, I. Krivtsov, J.R. García, L. Palmisano, Appl. Catal. B 220, 222 (2018)CrossRefGoogle Scholar
  22. 22.
    Y.Y. Wang, S. Zhao, Y.W. Zhang, J.S. Fang, Y.M. Zhou, S.H. Yuan, C. Zhang, W.X. Chen, Appl. Surf. Sci. 440, 258 (2018)CrossRefGoogle Scholar
  23. 23.
    C.L. Zhang, J. Bai, L. Ma, Y. Lv, F. Wang, X.X. Zhang, X.Z. Yuan, S.Z. Hu, Diamond Relat. Mater. 87, 215 (2018)CrossRefGoogle Scholar
  24. 24.
    S.W. Cao, Q. Huang, B.C. Zhu, J.G. Yu, J. Power Sources 351, 151 (2017)CrossRefGoogle Scholar
  25. 25.
    T. Xiong, H. Wang, Y. Zhou, Y.J. Sun, W.L. Cen, H.W. Huang, Y.X. Zhang, F. Dong, Nanoscale 10, 8066 (2018)CrossRefGoogle Scholar
  26. 26.
    A. Hussein, M. Scholz, Environ. Sci. Pollut. Res. 25, 6870 (2018)CrossRefGoogle Scholar
  27. 27.
    F. Guo, W.L. Shi, H.B. Wang, M. Han, H. Li, H. Huang, Y. Liu, Z.H. Kang, Catal. Sci. Technol. 7, 3325 (2017)CrossRefGoogle Scholar
  28. 28.
    M.H. Wu, C.J. Que, G. Xu, Y.F. Sun, J. Ma, H. Xu, R. Sun, L. Tang, Ecotoxicol. Environ. Saf. 132, 132 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Liu, J.J. Lu, Y.B. Tong, C. Li, Water Sci. Technol. 75, 1474 (2017)CrossRefGoogle Scholar
  30. 30.
    X.L. Wang, H.G. Yang, Appl. Catal. B 20, 624 (2017)CrossRefGoogle Scholar
  31. 31.
    L. Ke, P.F. Li, X. Wu, S.J. Jiang, M.B. Luo, Y.H. Liu, Z.G. Le, C.Z. Sun, S.Q. Song, Appl. Catal. B 205, 319 (2017)CrossRefGoogle Scholar
  32. 32.
    X.D. Sun, Y.Y. Li, J. Zhou, C.H. Ma, Y. Wang, J.H. Zhu, J. Colloid Interface Sci. 451, 108 (2015)CrossRefGoogle Scholar
  33. 33.
    Y.C. Deng, L. Tang, C.Y. Feng, G.M. Zeng, J.J. Wang, Y.Y. Zhou, Y. Liu, B. Peng, H.P. Feng, J. Hazard. Mater. 344, 758 (2017)CrossRefGoogle Scholar
  34. 34.
    B. Xue, H.Y. Jiang, T. Sun, F. Mao, Catal. Lett. 146, 2185 (2016)CrossRefGoogle Scholar
  35. 35.
    F. Guo, J.L. Chen, M.W. Zhang, B.F. Gao, B.Z. Lin, Y.L. Chen, J. Mater. Chem. A 4, 10806 (2016)CrossRefGoogle Scholar
  36. 36.
    W.J. Ong, L.K. Putri, L.L. Tan, S.P. Chai, S.T. Yong, Appl. Catal. B 180, 530 (2016)CrossRefGoogle Scholar
  37. 37.
    K. Kishi, H. Kirimura, Y. Fujimoto, Surf. Sci. 181, 586 (1987)CrossRefGoogle Scholar
  38. 38.
    J. Wang, P. Guo, M.F. Dou, J. Wang, Y.J. Cheng, P.G. Jönsson, Z. Zhao, RSC Adv. 4, 51008 (2014)CrossRefGoogle Scholar
  39. 39.
    Y. Wei, Q.C. Zou, P. Ye, M.Y. Wang, X.X. Li, A.H. Xu, Chemosphere 208, 358 (2018)CrossRefGoogle Scholar
  40. 40.
    J.D. Li, X.L. Zhang, F. Raziq, J.S. Wang, C. Liu, Y.D. Liu, J.W. Sun, R. Yan, B.H. Qu, C.L. Qin, L.Q. Jing, Appl. Catal. B 218, 60 (2017)CrossRefGoogle Scholar
  41. 41.
    S. Guo, Y.Q. Tang, Y. Xie, C.G. Tian, Q.M. Feng, W. Zhou, B.J. Jiang, Appl. Catal. B 218, 664 (2017)CrossRefGoogle Scholar
  42. 42.
    T. Sun, H.Y. Jiang, C.C. Ma, F. Mao, Catal. Commun. 79, 45 (2016)CrossRefGoogle Scholar
  43. 43.
    B. Lin, G.D. Yang, B.L. Yang, Y.X. Zhao, Appl. Catal. B 198, 276 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
  2. 2.Quality Supervision, Inspection and Testing Center for Cold Storage and Refrigeration Equipment (Shanghai)Ministry of AgricultureShanghaiChina
  3. 3.National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University)ShanghaiChina

Personalised recommendations