Advertisement

Polyaniline/carbon nanotube core–shell hybrid and redox active electrolyte for high-performance flexible supercapacitor

  • Chi XiaEmail author
  • Mingzhe Leng
  • Wei Tao
  • Qifen Wang
  • Yangfeng Gao
  • Qing Zhang
Article
  • 47 Downloads

Abstract

Integrated polyaniline/carbon nanotubes (PANI/CNTs) hybrid with shell/core nanostructure is fabricated by chemical vapor deposition and electrochemical deposition for flexible supercapacitor (SC) application. CNTs with homogeneous worm-like morphology and high conductivity are used as a skeleton to support high electrochemical active PANI. The PANI/CNTs core–shell hybrid displays high specific capacitance of 823 F g− 1 in 1 M H2SO4 electrolyte at 5.0 A g− 1, the enhanced specific capacitance of 1128 F g− 1 was obtained with 0.02 M Fe3+/Fe2+ as redox additive in the electrolyte. Additionally, flexible symmetric SC has been assembled using PVA/H2SO4/Fe3+/Fe2+ as redox active gel electrolyte. The flexible SC exhibits an improved energy density as high as 22.9 Wh kg− 1 at a power density of 700.1 W kg− 1 and affords the capacitance retention of 97% after 2000 charge–discharge cycles. Furthermore, the fabricated SC device shows good flexibility and the output potential or current can be improved by connected three SC into series or parallel type. These results provide the potential and effective approach to enhance the electrochemical performances of flexible SC.

Notes

Acknowledgements

This work was supported by the Key Science & Technology Program of Shandong Province (No. 2018JMRH0211), the Northern Industrial Foundation of China (No. 6141B010316).

References

  1. 1.
    H. Li, Y. Hou, F. Wang, M.R. Lohe, X. Zhuang, L. Niu, X. Feng, Adv. Energy Mater. 7, 1601847 (2017)CrossRefGoogle Scholar
  2. 2.
    J. Du, C. Zheng, W. Lv, Y. Deng, Z. Pan, F. Kang, Q.H. Yang, Adv. Mater. Interfaces 4, 1700004 (2017)CrossRefGoogle Scholar
  3. 3.
    N. Blomquist, T. Wells, B. Andres, J. Bäckström, S. Forsberg, H. Olin, Sci. Rep. 7, 39836 (2017)CrossRefGoogle Scholar
  4. 4.
    A.C. Forse, J.M. Griffin, C. Merlet, J. Carreterogonzalez, A.R.O. Raji, N.M. Trease, C.P. Grey, Nat. Energy 2, 16216 (2017)CrossRefGoogle Scholar
  5. 5.
    E. Feng, H. Peng, Z. Zhang, J. Li, Z. Lei, New J. Chem. 41, 9024 (2017)CrossRefGoogle Scholar
  6. 6.
    H. Moon, H. Lee, J. Kwon, Y.D. Suh, D.K. Kim, I. Ha, J. Yeo, S. Hong, S.H. Ko, Sci. Rep. 7, 41981 (2017)CrossRefGoogle Scholar
  7. 7.
    P. Xu, H. Liu, Y. Qin, J. Wu, P. Chen, G. Zhang, G. Liu, C. Wu, X. Yi, Nat. Commun. 7, 11782 (2016)CrossRefGoogle Scholar
  8. 8.
    Y. Ko, M. Kwon, K.B. Wan, B. Lee, S.W. Lee, J. Cho, Nat. Commun. 8, 536 (2017)CrossRefGoogle Scholar
  9. 9.
    Y. Meng, L. Jin, B. Cai, Z. Wang, Rsc Adv. 7, 38187 (2017)CrossRefGoogle Scholar
  10. 10.
    G.F. Chen, X.X. Li, L.Y. Zhang, N. Li, T.Y. Ma, Z.Q. Liu, Adv. Mater. 28, 7680 (2016)CrossRefGoogle Scholar
  11. 11.
    W. Zhao, S. Wang, C. Wang, S. Wu, W. Xu, M. Zou, A. Ouyang, A. Cao, Y. Li, Nanoscale 8, 626 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Jain, R. Balasubramanian, M.P. Srinivasan, Chem. Eng. J. 283, 789 (2016)CrossRefGoogle Scholar
  13. 13.
    B. Men, P. Guo, Y. Sun, Y. Tang, Y. Chen, J. Pan, P. Wan, J. Mater. Sci. 54, 2446 (2019)CrossRefGoogle Scholar
  14. 14.
    R.C. Ambare, S.R. Bharadwaj, B.J. Lokhande, Appl. Surf. Sci. 349, 887 (2015)CrossRefGoogle Scholar
  15. 15.
    R.C. Ambare, P. Shinde, U.T. Nakate, B.J. Lokhande, R.S. Mane, Appl. Surf. Sci. 453, 214 (2018)CrossRefGoogle Scholar
  16. 16.
    R.C. Ambare, B.J. Lokhande, J. Anal. Appl. Pyrolysis 132, 245 (2018)CrossRefGoogle Scholar
  17. 17.
    Y. Zhu, S.H. Choi, X. Fan, J. Shin, Z. Ma, M.R. Zachariah, J.W. Choi, C. Wang, Adv. Energy. Mater. 7, 1601578 (2017)CrossRefGoogle Scholar
  18. 18.
    C. Xia, Y. Xie, H. Du, W. Wang, J. Nanopart. Res. 17, 30 (2015)CrossRefGoogle Scholar
  19. 19.
    B.J. Lokhande, R.C. Ambare, R.S. Mane, S.R. Bharadwaj, Curr. Appl. Phys. 13, 985 (2013)CrossRefGoogle Scholar
  20. 20.
    L. Dong, G. Liang, C. Xu, D. Ren, J. Wang, Z.Z. Pan, B. Li, F. Kang, Q.H. Yang, J. Mater. Chem. A. 5, 19934 (2017)CrossRefGoogle Scholar
  21. 21.
    Y. Zhu, E. Liu, Z. Luo, T. Hu, T. Liu, Z. Li, Q. Zhao, Electrochim. Acta 118, 106 (2014)CrossRefGoogle Scholar
  22. 22.
    L. Wen, K. Li, J. Liu, Y. Huang, F. Bu, B. Zhao, Y. Xu, Rsc Adv. 7, 7688 (2017)CrossRefGoogle Scholar
  23. 23.
    T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, Y. Li, Nano Lett. 14, 2522 (2014)CrossRefGoogle Scholar
  24. 24.
    Y. Xie, C. Xia, H. Du, W. Wang, J. Power Sources 286, 561 (2015)CrossRefGoogle Scholar
  25. 25.
    Y. Yin, Y. Xu, Y. Zhou, Y. Yan, K. Zhan, J. Yang, J. Li, B. Zhao, ChemElectroChem 5, 1394 (2018)CrossRefGoogle Scholar
  26. 26.
    Z. Pan, M. Liu, J. Yang, Y. Qiu, W. Li, Y. Xu, X. Zhang, Y. Zhang, Adv. Funct. Mater. 27, 1701122 (2017)CrossRefGoogle Scholar
  27. 27.
    D. Kim, G. Lee, J. Yun, S.S. Lee, J.S. Ha, Nanoscale 8, 15611 (2016)CrossRefGoogle Scholar
  28. 28.
    G.K. Veerasubramani, K. Krishnamoorthy, P. Pazhamalai, J.K. Sang, Carbon 105, 638 (2016)CrossRefGoogle Scholar
  29. 29.
    B.P. Prasanna, D.N. Avadhani, M.S. Raghu, Y.K. Kumar, Mater. Today Commun. 12, 72 (2017)CrossRefGoogle Scholar
  30. 30.
    L. Ren, G. Zhang, Z. Yan, L. Kang, H. Xu, F. Shi, Z. Lei, Z.H. Liu, Electrochim. Acta 231, 705 (2017)CrossRefGoogle Scholar
  31. 31.
    T. Liu, Y. Zhu, E. Liu, Z. Luo, T. Hu, Z. Li, R. Ding, Trans. Nonferrous Met. Soc. China 25, 2661 (2015)CrossRefGoogle Scholar
  32. 32.
    L. Chen, Z. Song, G. Liu, J. Qiu, C. Yu, J. Qin, L. Ma, F. Tian, W. Liu, J. Phys. Chem. Solids 74, 360 (2013)CrossRefGoogle Scholar
  33. 33.
    Y. Wang, D. Yang, J. Lian, J. Pan, T. Wei, Y. Sun, J. Alloys Compd. 735, 2046 (2017)CrossRefGoogle Scholar
  34. 34.
    M.A. Bavio, G.G. Acosta, T. Kessler, A. Visintin, Energy 130, 22 (2017)CrossRefGoogle Scholar
  35. 35.
    K.S. Kim, S.J. Park, J. Solid State Electrochem. 16, 2751 (2012)CrossRefGoogle Scholar
  36. 36.
    F. Liu, S.C. Luo, D. Liu, W. Chen, Y. Huang, L. Dong, L. Wang, ACS Appl. Mater. Interfaces. 9, 33791 (2017)CrossRefGoogle Scholar
  37. 37.
    Y. Zhang, T. Mao, H. Wu, L. Cheng, L. Zheng, Adv. Mater. Interfaces. 4, 1601123 (2017)CrossRefGoogle Scholar
  38. 38.
    Y. Liu, D. Yan, Y. Li, Z. Wu, R. Zhuo, S. Li, J. Feng, J. Wang, P. Yan, Z. Geng, Electrochim. Acta 117, 528 (2014)CrossRefGoogle Scholar
  39. 39.
    R. Bolagam, P. Srinivasan, Ionics 23, 1277 (2017)CrossRefGoogle Scholar
  40. 40.
    H. Heydari, M.B. Gholivand, New J. Chem. 41, 237 (2016)CrossRefGoogle Scholar
  41. 41.
    K. Li, J. Liu, Y. Huang, F. Bu, Y. Xu, J. Mater. Chem. A. 5, 5466 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Shandong Non-Metallic MaterialsJinanChina
  2. 2.School of Materials Science and EngineeringShandong UniversityJinanChina

Personalised recommendations