Advertisement

Interatomic chemical bonding and charge correlation of optical, magnetic and dielectric properties of La1−xSrxFeO3 multiferroics synthesized by solid- state reaction method

  • G. GowriEmail author
  • R. Saravanan
  • S. Sasikumar
  • M. Nandhakumar
  • R. Ragasudha
Article
  • 36 Downloads

Abstract

Strontium (Sr) substituted LaFeO3 (La1−xSrxFeO3) (x = 0.05, 0.10, 0.15 and 0.20) multiferroics were synthesized by the conventional high temperature solid-state reaction method. The X-ray diffraction was used to analyze the phase formation and purity of La1−xSrxFeO3 multiferroics. The X-ray diffraction patterns confirm that all the samples are monophasic with orthorhombic structure. The charge density distribution and the interatomic chemical bonding between the neighbouring atoms in the unit cell were examined using the structure factors obtained through the refinement process. SEM micrographs were used to observe the surface morphology and to determine the average particle size. UV–Vis spectrographs and magnetic hysteresis (M–H) loops from magnetic measurements were exploited to investigate the optical and magnetic behavior of the samples. The magnetic hysteresis loops indicate that the prepared La1−xSrxFeO3 multiferroics exhibit ferromagnetic behavior. Ferromagnetism was observed to be relatively prominent for x = 0.05 sample, with high values of magnetic parameters such as Ms, Mr, and HC as 2.4 emu/g, 1.12 emu/g, and 1616 G respectively. The dielectric measurements indicate that the sample with Sr content x = 0.05, attains the giant value of dielectric constant of about 2.3 × 105 and ac conductivity of about 0.2 Ω−1m−1 when compared to the other samples. The optical, magnetic and dielectric properties of La1−xSrxFeO3 multiferroics have been examined and also have been correlated with the charge, bonding nature and the spin of the constituent ions which has not been explored in open literature so far.

Keywords

XRD Charge density Ferromagnetism Dielectric constant AC conductivity 

Notes

Acknowledgements

The authors acknowledge Sophisticated Analytical Instrument Facility (SAIF), Cochin University, India, for their help in the collection of powder X-ray diffraction data, UV–Visible spectra and SEM micrographs. Also, the authors thank Gandhigram rural university, Dindugal, Tamilnadu, India for EDS measurements. The authors acknowledge SAIF, IIT Madras, Chennai, India, for the VSM measurements. The authors would like to acknowledge Abraham Panampara Research Center (APRC), Sacred Heart College, Vellore, Tamilnadu, India for dielectric measurements. The authorities of The Madura College, Madurai-625 011, Tamilnadu, India are gratefully acknowledged for their constant encouragement of the research activities of the authors.

References

  1. 1.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S. Mostafa Hosseinpour-Mashkani, J. Mater. Sci.: Mater. Electron. 26, 9776 (2015)Google Scholar
  2. 2.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M. Rangraz Jeddy, J. Mater. Sci.: Mater. Electron. 27, 11691 (2016)Google Scholar
  3. 3.
    A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M. Reza Ganjali, A. Badiei, Res. Chem. Intermed. 43, 6911 (2017)CrossRefGoogle Scholar
  4. 4.
    C.A.M. Van den Broek, A.L. Stuijts, Philips Tech. Rev. 37, 157 (1977)Google Scholar
  5. 5.
    X. Zuo, S. Ping, S.A. Oliver, C. Victoria, IEEE Trans.Magn. 38, 3493 (2002)CrossRefGoogle Scholar
  6. 6.
    X. Zuo, H. How, S. Somu, C. Victoria, IEEE Trans. Magn. 39, 3160 (2003)CrossRefGoogle Scholar
  7. 7.
    C.A.L. Dixon, C.M. Kavanagh, K.S. Knight, W. Kockelmann, F.D. Morrison, P. Lightfoot, J Solid State Chem. 230, 337 (2015)CrossRefGoogle Scholar
  8. 8.
    P. Ciambelli, S. Cimino, S. De Rossi, L. Lis, G. Minelli, P. Porta, G. Russo, Appl. Catal. B 29, 239 (2001)CrossRefGoogle Scholar
  9. 9.
    S. Phokha, S. Pinitsoontorn, S. Rujirawat, S. Maensiri, Physica B. 476, 55 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Acharya, J. Mondal, S. Ghosh, S.K. .Roy, P.K. Chakrabarti, Mater. Lett. 64, 415 (2010)CrossRefGoogle Scholar
  11. 11.
    B.C. Steele, A. Heinzel, Nature 414, 345 (2001)CrossRefGoogle Scholar
  12. 12.
    A. Hammou, J. Guindet, P.J. Gellings, H.J.M. Bouwmeester (Eds.) The CRC Handbook of Solid State Electrochemistry, (CRC Press Inc., Boca Raton, 1997), Vol 407, pp. 1–200Google Scholar
  13. 13.
    P.S. Devi, A.D. Sharma, H.S. Maiti, T Indian Ceram. Soc. 63, 75 (2004)CrossRefGoogle Scholar
  14. 14.
    C. Vasques, P. Kogerler, M.A. Lopez-Quintela, J. Mater. Res. 13, 451 (1998)CrossRefGoogle Scholar
  15. 15.
    D.B. Meadowcraft, J.M. Wimmer, Ceram. Bull. 58, 610 (1979)Google Scholar
  16. 16.
    X. Liu, H. Ji, Y. Gu, M. Xu, Mater. Sci. Eng. B 133, 98 (2006)CrossRefGoogle Scholar
  17. 17.
    N.N. Toan, S. Saukko, V. Lantto, Physica B 327, 279 (2003)CrossRefGoogle Scholar
  18. 18.
    M.A. Ahmed, N. Okasha, B. Hussein, J. Alloys Compd. 553, 308 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, Science 334, 1383 (2011)CrossRefGoogle Scholar
  20. 20.
    J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Norskov, J. Electroanal. Chem. 607, 83 (2007)CrossRefGoogle Scholar
  21. 21.
    A. Grimaud, K.J. May, C.E. Carlton, Y.L. Lee, M. Risch, W.T. Hong, J. Zhou, Y. Shao-Horn, Nat. Commun. 4, 2439 (2013)CrossRefGoogle Scholar
  22. 22.
    R.A. Rincon, E. Ventosa, F. Tietz, J. Masa, S. Seisel, V. Kuznetsov, W. Schuhmann, Chem. Phys. Chem. 15, 2810 (2014)CrossRefGoogle Scholar
  23. 23.
    T. L.Liu, Q. Zhang, L. Qi, W.Chen Zhang, B. Xu, Solid-State Electron 51, 1029 (2007)CrossRefGoogle Scholar
  24. 24.
    V.L. Kozhevnikov, I.A. Leonidov, M.V. Patrakeev, A.A. Markov, Y.N. Blinovskov, J. Solid State Electrochem. 13, 391 (2009)CrossRefGoogle Scholar
  25. 25.
    V.V. Kharton (ed.), Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes (Wiley-VCH, Weinheim, 2011)Google Scholar
  26. 26.
    G.R. Hearne, M.P. Pasternak, Phys. Rev. B 51, 11495 (1995)CrossRefGoogle Scholar
  27. 27.
    J.M. Liu, Q.C. Li, X.S. Gao, Y. Yang, X.H. Zhou, X.Y. Chen, Z.G. Liu, Phys. Rev. B 66, 054416 (2002)CrossRefGoogle Scholar
  28. 28.
    N.A. Hill, J. Phys. Chem. B. 104, 6694 (2000)CrossRefGoogle Scholar
  29. 29.
    T. Fujii, I. Matsusue, D. Nakatsuka, M. Nakanishi, J. Takada, Mater. Chem. Phys. 129, 805 (2011)CrossRefGoogle Scholar
  30. 30.
    B. Vishwanathan, V.R.K. Murthy, Ferrite Materials, Science, Technology, Narosa, New Delhi (1990)Google Scholar
  31. 31.
    S. Phokha, S. Hunpratup, S. Pinitsoontorn, B. Putasaeng, S. Rujirawat, S. Maensiri, Mater. Res. B 67, 118 (2015)CrossRefGoogle Scholar
  32. 32.
    K. Mukhopadhyay, A.S. Mahapatra, P.K. Chakrabarti, J. Magn. Magn. Mater. 329, 133 (2013)CrossRefGoogle Scholar
  33. 33.
    I. Bhat, S. Husain, W. Khan, S.I. Patil, Mater. Res. Bull. 48, 4506 (2013)CrossRefGoogle Scholar
  34. 34.
    M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Acta Mater. 59, 1338 (2011)CrossRefGoogle Scholar
  35. 35.
    Y. Janbutrach, S. Hunpratub, E. Swatsitang, Nanoscale Res. Lett. 9, 498 (2014)CrossRefGoogle Scholar
  36. 36.
    S. Hunpratub, A. Karaphun, S. Phokha, E. Swatsitang, Appl. Surf. Sci. 380, 52 (2016)CrossRefGoogle Scholar
  37. 37.
    B. Barbero, J.A. Gamboa, L.E. Cadus, Appl. Catal. B 65, 21 (2006)CrossRefGoogle Scholar
  38. 38.
    E. Swatsitang, A. Karaphun, S. Phokha, S. Hunpratub, T. Putjuso, J. Sol-Gel. Sci. Technol. 81, 483 (2017)CrossRefGoogle Scholar
  39. 39.
    B.V. Prasad, B.V. Rao, K. Narsaiah, G.N. Rao, J.W. Chen, D.S. Babu, IOP Conf. Ser.: Mater. Sci. Eng. 73, 012129 (2015)CrossRefGoogle Scholar
  40. 40.
    K.D. Chandrasekhar, S. Mallesh, J.K. Murthy, A.K. Das, A. Venimadhav, Physica B. 448, 304 (2014)CrossRefGoogle Scholar
  41. 41.
    S. Acharya, P.K. Chakrabarti, Solid State Commun. 150, 1234 (2010)CrossRefGoogle Scholar
  42. 42.
    X.P. Xiang, L.H. Zhao, B.T. Teng, J.J. Lang, X. Hu, T. Li, Y.A. Fang, M.F. Luo, J.J. Lin, Appl. Surf. Sci. 276, 328 (2013)CrossRefGoogle Scholar
  43. 43.
    A.E. Giannakas, A.A. Leontiou, A.K. Ladavos, P.J. Pomonis, Appl. Catal. A. 309, 254 (2006)CrossRefGoogle Scholar
  44. 44.
    P. Shikha, T.S. Kang, B.S. Randhawa, J. Alloys Compd. 625, 336 (2015)CrossRefGoogle Scholar
  45. 45.
    H. Xiao, C. Xue, P. Song, J. Li, Q. Wang, Appl. Surf. Sci. 337, 65 (2015)CrossRefGoogle Scholar
  46. 46.
    P. Tang, Y. Tong, H. Chen, F. Cao, G. Pan, Appl. Phys. 13, 340 (2013)Google Scholar
  47. 47.
    H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  48. 48.
    M. Sakata, M. Sato, Accurate structure analysis by the maximum entropy method. Acta Crystallogr. A 46, 263 (1990)CrossRefGoogle Scholar
  49. 49.
    R. Saravanan, N. Thenmozhi, Yen-Pei Fu, J. Electron. Mater. 45, 4364 (2016)CrossRefGoogle Scholar
  50. 50.
    R.A.J.R. Sheeba, S. Saravanakumar, S. Israel, R. Saravanan, J. Alloys Compd. 728, 887 (2017)CrossRefGoogle Scholar
  51. 51.
    R. Saravanan, M. Charles Robert, J. Alloys Compd. 479, 26 (2009)CrossRefGoogle Scholar
  52. 52.
    T.K. Thirumalaisamy, R. Saravanan, S. Saravanakumar, J. Mater. Sci.:Mater. Electron. 26, 6683 (2015)Google Scholar
  53. 53.
    S. Sasikumar, R. Saravanan, J. Electron. Mater. 46, 4187 (2017)CrossRefGoogle Scholar
  54. 54.
    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)CrossRefGoogle Scholar
  55. 55.
    D.T. Richens, The Chemistry of Aqua Ions (Wiley, New Jersey, 604 (1997)Google Scholar
  56. 56.
    A.T. Nguyen, M.V. Knurova, T.M. Nguyen, V.O. Mittova, I.Ya. Mittova, Nanosyst.: Phys. Chem. Math. 5, 692 (2014)Google Scholar
  57. 57.
    B.M. Gorelov, E.V. Kotenok, S.N. Makhno, V.V. Sydorchuk, S.V. Khalameida, V.A. Zazhigalov, Solid -State Electron. 56, 83 (2011)Google Scholar
  58. 58.
    V.M. Goldschmidt, Naturwissenschaften. 14, 477 (1926)CrossRefGoogle Scholar
  59. 59.
    V. Petricek, M. Dusek, L. Palatinus, JANA, the crystallographic computing system (Praha, Czech Republic, 2006)Google Scholar
  60. 60.
    R.W.G. Wyckoff, Crystal Structures I (Inter-Space Publishers, London, 1963)Google Scholar
  61. 61.
    S. Saravanakumar, J. Kamalaveni, M. Prema Rani, R. Saravanan, J. Mater. Sci.: Mater. Electron. 25, 1 (2014)Google Scholar
  62. 62.
    F. Izumi, R.A. Dilanien. PRIMA, for the maximum entropy method advanced materials laboratory, Japan (2004)Google Scholar
  63. 63.
    F. Momma, Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653 (2008)CrossRefGoogle Scholar
  64. 64.
    D. Li, F. Wang, T. Wu, T. Xie, Li, Mater. Chem. Phys. 64, 269 (2000)CrossRefGoogle Scholar
  65. 65.
    J. Tauc, R. Grigorvici, A. Vancu, Phys. Status Solidi B 15, 627 (1966)CrossRefGoogle Scholar
  66. 66.
    P.C. Maxwell, Electricity and Magnetism, Oxford university press, Oxford, Vol 1, Section 328Google Scholar
  67. 67.
    C.G. Koop, Phys. Rev. 83, 121 (1951)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Centre and Post Graduate Department of PhysicsThe Madura CollegeMaduraiIndia
  2. 2.Multifunctional Materials Laboratory, Department of PhysicsInternational Research Centre, Kalasalingam Academy of Research and EducationKrishnankoilIndia

Personalised recommendations