Advertisement

Fabrication, characterization, and luminescent properties of Y2WO6: Gd3+, Dy3+ hierarchical microspheres

  • Wei-Feng Rao
  • Yue Guan
  • Jia-Yu Yang
  • Qi-Qi Huang
  • Ju-Hong MiaoEmail author
Article
  • 9 Downloads

Abstract

A series of monodisperse Y2WO6: Dy3+, Gd3+ hierarchical microspheres were synthesized via a facile surfactant-assisted hydrothermal method followed by heat treatment. The as-synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and photoluminescence (PL) spectra. XRD patterns of the samples with Gd3+ codoping exhibit a merging of (− 232) and (232) peaks, indicating the distorted deformation in Y2WO6 host structure. SEM images demonstrate that the Y2WO6: Dy3+, Gd3+ microspheres are well-dispersed and assembled by many irregular nanoparticles. Upon ultraviolet (UV) excitation at 291 nm, the emission peaks of Dy3+ ions is observed at 480 nm (blue), 579 nm (yellow) and 669 nm (red), corresponding to the characteristic transitions of 4F9/2 → 6H15/2, 4F9/2 → 6H13/2 and 4F9/2 → 6H11/2 of Dy3+, respectively. The optimal PL intensity was obtained in Y2WO6: 2.5 mol% Dy3+ microspheres which can be further enhanced with the codoping of Gd3+. The strongest luminescence is achieved at Gd3+ concentration of 40 mol% with a quantum yied (QY) of 34.45%. In addition, the thermal stability of the sample was also investigated. The CIE of the investigated samples exhibit little change by varying the concentration of Gd3+ ions. The calculated CIE values are all around (0.37, 0.38) and located at the white region, suggesting that the Y2WO6: Dy3+, Gd3+ microspheres could be used for white LEDs.

Notes

Acknowledgements

This work was supported by the grant of Six Major Talent Peak Expert of Jiangsu Province (Grant Nos. R2016L01, 2015-XXRJ-014) and the National Science Foundation of China under Grant No. 11474167.

References

  1. 1.
    C.W. Sun, J. Sun, G.L. Xiao, H.R. Zhang, X.P. Qiu, H. Li, L.Q. Chen, J. Phys. Chem. B 110, 13445 (2006)CrossRefGoogle Scholar
  2. 2.
    H. Cho, G. Pauletti, J. Zhang, H. Xu, H. Gu, L. Wang, R. Ewing, C. Huth, F. Wang, D. Shi, ACS Nano 4, 5398 (2010)CrossRefGoogle Scholar
  3. 3.
    Q. Ju, Y.S. Liu, D.T. Tu, H.M. Zhu, R.F. Li, X.Y. Chen, Chem.-Eur. J. 17, 8549 (2011)CrossRefGoogle Scholar
  4. 4.
    G. Li, C. Peng, C. Zhang, Z. Xu, M. Shang, D. Yang, X. Kang, W. Wang, C. Li, Z. Cheng, J. Lin, Inorg. Chem. 49, 10522 (2010)CrossRefGoogle Scholar
  5. 5.
    R. Bardhan, O. Neumann, N. Mirin, H.J. Wang, N. Halas, ACS Nano 3, 266 (2009)CrossRefGoogle Scholar
  6. 6.
    J. Yang, C. Li, Z. Quan, C. Zhang, P. Yang, Y. Li, C. Yu, J. Lin, J. Phys. Chem. C 112, 12777 (2008)CrossRefGoogle Scholar
  7. 7.
    S.H. Huang, X. Zhang, L.Z. Wang, J. Xu, C.X. Li, P.P. Yang, Dalton Trans. 41, 5634 (2012)CrossRefGoogle Scholar
  8. 8.
    R. Krishnan, J. Thirumalai, S. Thomas, M. Gowri, J. Alloys Compd. 604, 20 (2014)CrossRefGoogle Scholar
  9. 9.
    F.B. Xiong, C.Y. Han, H.F. Lin, Y.P. Wang, H.Y. Lin, H.X. Shen, W.Z. Zhu, Ceram. Int. 42, 13841 (2016)CrossRefGoogle Scholar
  10. 10.
    Q. Meng, R. Hua, B. Chen, Y. Tian, S. Lu, L. Sun, J. Nanosci. Nanotechnol. 11, 182 (2011)CrossRefGoogle Scholar
  11. 11.
    R. Van Deun, D. Ndagsi, J. Liu, I. Van Driessche, K. Van Hecke, A.M. Kaczmarek, Dalton Trans. 44, 15022 (2015)CrossRefGoogle Scholar
  12. 12.
    A.M. Kaczmarek, K. Van Hecke, R. Van Deun, Inorg. Chem. 53, 9498 (2014)CrossRefGoogle Scholar
  13. 13.
    J.G. Li, Z.Y. Wu, X.Y. Sun, X.W. Zhang, R.C. Dai, J. Zuo, Z. Zhao, J. Mater. Sci. 52, 3110 (2017)CrossRefGoogle Scholar
  14. 14.
    Y. Chen, G.H. Chen, X.Y. Liu, C.L. Yuan, C.R. Zhou, Opt. Mater. 73, 535 (2017)CrossRefGoogle Scholar
  15. 15.
    X.Y. Liu, G.H. Chen, Y. Chen, J.W. Xu, J. Mater. Sci.: Mater. Electron. 29, 16041 (2018)Google Scholar
  16. 16.
    T. Selvalakshmi, A.C. Bose, S. Velmathi, Ceram. Int. 41, 8801 (2015)CrossRefGoogle Scholar
  17. 17.
    M.M. Kimani, J.W. Kolis, J. Lumin. 145, 492 (2014)CrossRefGoogle Scholar
  18. 18.
    W. Wang, X.B. Wang, P. Zhang, X. Lei, H. Yang, RSC Adv. 6, 54801 (2016)CrossRefGoogle Scholar
  19. 19.
    A. Ege, M. Ayvacikli, O. Dincer, S.U. Satilmis, J. Lumin. 143, 653 (2013)CrossRefGoogle Scholar
  20. 20.
    K.S. Shim, H.K. Yang, B.K. Moon, J.H. Jeong, S.S. Yi, K.H. Kim, Appl. Phys. A 88, 623 (2007)CrossRefGoogle Scholar
  21. 21.
    M.N. Huang, Y.Y. Ma, X.Y. Huang, S. Ye, Q.Y. Zhang, Spectrochim. Acta Part A 115, 767 (2013)CrossRefGoogle Scholar
  22. 22.
    A.K. Parchur, A.I. Prasad, S.B. Rai, R.S. Ningthoujam, Dalton Trans. 41, 13810 (2012)CrossRefGoogle Scholar
  23. 23.
    S.D. Meetei, M.D. Singh, S.D. Singh, J. Appl. Phys. 28, 115 (2014)Google Scholar
  24. 24.
    D.H. Kuang, P. Tang, X.H. Wu, S.H. Yang, X.D. Ding, Y.L. Zhang, J. Alloys Compd. 671, 192–199 (2016)CrossRefGoogle Scholar
  25. 25.
    S.V. Yap, R.M. Ranson, W.M. Cranton, D.C. Koutsogeorgis, G.B. Hix, J. Lumin. 129(5), 416–422 (2009)CrossRefGoogle Scholar
  26. 26.
    C.M. Zhang, J.Y. Zhang, Y.S. Li, J. Zhao, W. Wei, R.R. Yao, G. Jia, S.G. Shen, J. Alloys Compd. 698, 33 (2017)CrossRefGoogle Scholar
  27. 27.
    K. Park, S.W. Nam, M.H. Heo, Ceram. Int. 36, 1541 (2010)CrossRefGoogle Scholar
  28. 28.
    Y. Cui, S. Zhao, Z. Liang, M. Han, Z. Xu, J. Alloys Compd. 593, 30 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Wei-Feng Rao
    • 1
  • Yue Guan
    • 1
  • Jia-Yu Yang
    • 1
  • Qi-Qi Huang
    • 1
  • Ju-Hong Miao
    • 1
    Email author
  1. 1.Department of Materials Physics, Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET)IEMM, Nanjing University of Information Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations