Advertisement

Sputtered transparent conducting graphene films on iron oxide coated glass

  • F. Montejo-Alvaro
  • J. Oliva
  • A. Zarate
  • M. Herrera-Trejo
  • H. M. Hdz-García
  • A. I. Mtz-EnriquezEmail author
Article
  • 38 Downloads

Abstract

This work reports the optical, electrical and morphological properties of graphene (G) films. Firstly, glass substrates were coated with iron oxide (IO) films using a spraying method. Subsequently, the sputtering technique was employed for the formation of graphene films on the IO layers (G/IO films). According to XPS spectra, the IO films offered anchorage sites for the growth of G that improved the adherence to the substrate. Additionally, the sheet resistance of the films was in the range of 16–19.5 kΩ/□. Also, the optical measurements revealed that the G/IO films subjected to a post-deposition heat treatment presented a transmittance ~ 11% higher than those as-deposited. In fact, those heat-treated films presented a transparency above 80% for wavelengths above 850 nm and a high elasticity modulus of 0.188 ± 0.039 TPa, which make them good candidates to be used as transparent conductive electrodes in thin film transistors, surface plasmon biosensors or surface enhanced Raman scattering (SERS) substrates.

Notes

Acknowledgements

The authors gratefully acknowledge Conacyt, Sener, and IER-UNAM for funding through the Mexican Center for Innovation in Solar Energy (CeMIE-Sol), Project P-35. FMA acknowledges CONACYT for the PhD scholarship. AZ acknowledges the financial support from the Proyecto Fondecyt #1130984.

Supplementary material

10854_2019_723_MOESM1_ESM.docx (766 kb)
Supplementary material 1 (DOCX 766 KB)

References

  1. 1.
    O. Karzazi, L. Soussi, A. Louardi, A. El Bachiri, M. Khaidar, M. Monkade, H. Erguig, M. Taleb, Superlattices Microstruct. (2018).  https://doi.org/10.1016/j.spmi.2018.03.011
  2. 2.
    S. Park, J.T. Lim, W.Y. Jin, H. Lee, B.H. Kwon, N.S. Cho, J.H. Han, J.W. Kang, S. Yoo, J.I. Lee, ACS Photonics 4, 1114 (2017)CrossRefGoogle Scholar
  3. 3.
    A.I. Martínez, L. Huerta, J.M. O-Rueda De, D. León, O. Acosta, Malik, M. Aguilar, J. Phys. D Appl. Phys. 39, 5091 (2006)CrossRefGoogle Scholar
  4. 4.
    Q. Zheng, Z. Li, J. Yang, J.K. Kim, Prog. Mater Sci. 64, 200 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Andersson, N. Johansson, P. Bröms, N. Yu, D. Lupo, W.R. Salaneck, Adv. Mater. 10, 859 (1998)CrossRefGoogle Scholar
  6. 6.
    M. Acosta, J. Mendez-Gamboa, I. Riech, C. Acosta, M. Zambrano, Superlattices Microstruct. (2018).  https://doi.org/10.1016/j.spmi.2018.03.018
  7. 7.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008)CrossRefGoogle Scholar
  8. 8.
    S.K. Hong, S.M. Song, O. Sul, B.J. Cho, J. Electrochem. Soc. 159, K107 (2012)CrossRefGoogle Scholar
  9. 9.
    H.B. Sun, J. Yang, Y.Z. Zhou, N. Zhao, D. Li, Mater. Technol. 29, 14 (2014)CrossRefGoogle Scholar
  10. 10.
    T.-H. Han, S.-H. Jeong, Y. Lee, H.-K. Seo, S.-J. Kwon, M.-H. Park, T.-W. Lee, J. Inf. Disp. 16, 71 (2015)CrossRefGoogle Scholar
  11. 11.
    H. Shi, C. Wang, Z. Sun, Y. Zhou, K. Jin, G. Yang, Sci. China Phys. Mech. Astron. 58, 1 (2015)CrossRefGoogle Scholar
  12. 12.
    Q. Wang, B.-T. Wang, Sens. Actuators B Chem. 275, 332 (2018)CrossRefGoogle Scholar
  13. 13.
    H. Yang, H. Hu, Z. Ni, C. Kok, C. Cong, J. Lin, T. Yu, Carbon N. Y. 62, 1 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Suzuki, M. Yoshimura, Sci. Rep. 7, 1 (2017)CrossRefGoogle Scholar
  15. 15.
    B. Luo, J.M. Caridad, P.R. Whelan, J.D. Thomsen, D.M.A. Mackenzie, A. Grubišić Čabo, S.K. Mahatha, M. Bianchi, P. Hofmann, P.U. Jepsen, P. Bøggild, T.J. Booth, 2D Mater. 4, 045017 (2017)CrossRefGoogle Scholar
  16. 16.
    M.I. Ionescu, X. Sun, B. Luan, Can. J. Chem. 93, 1 (2015)Google Scholar
  17. 17.
    A.E. Aleksenskii, P.N. Brunkov, A.T. Dideikin, D.A. Kirilenko, Y.V. Kudashova, D.A. Sakseev, V.A. Sevryuk, M.S. Shestakov, Tech. Phys. 58, 1614 (2013)CrossRefGoogle Scholar
  18. 18.
    G.G. Politano, E. Cazzanelli, C. Versace, C. Vena, M.P. De Santo, M. Castriota, F. Ciuchi, R. Bartolino, Appl. Surf. Sci. 427, 927 (2018)CrossRefGoogle Scholar
  19. 19.
    W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, Y. Xu, J.K. Luo, Sci. Rep. 4, 1 (2014)Google Scholar
  20. 20.
    P. Zuo, X. Li, D.C. Dominguez, B.C. Ye, Lab Chip 13, 3921 (2013)CrossRefGoogle Scholar
  21. 21.
    V.D. Phung, J.W. Sik, J. Kim, S. Lee, 2017 22nd Microoptics Conference, Tokyo (2017), pp. 190–191  https://doi.org/10.23919/MOC.2017.8244551
  22. 22.
    Z. Yan, Z. Peng, Z. Sun, J. Yao, Y. Zhu, Z. Liu, P.M. Ajayan, J.M. Tour, ACS Nano 5, 8187 (2011)CrossRefGoogle Scholar
  23. 23.
    P. Krauß, J. Engstler, J.J. Schneider, Beilstein J. Nanotechnol. 8, 2017 (2017)CrossRefGoogle Scholar
  24. 24.
    S.-K. Jerng, D. Seong Yu, J. Hong Lee, C. Kim, S. Yoon, S.-H. Chun, Nanoscale Res. Lett. 6, 565 (2011)CrossRefGoogle Scholar
  25. 25.
    M.H. Rümmeli, A. Bachmatiuk, F. Börrnert, F. Schäffel, I. Ibrahim, K. Cendrowski, G. Simha-Martynkova, D. Plachá, E. Borowiak-Palen, G. Cuniberti, B. Büchner, Nanoscale Res. Lett. 6, 1 (2011)CrossRefGoogle Scholar
  26. 26.
    X.J. Dai, C. Skourtis, J. Appl. Phys. 103, (2008)Google Scholar
  27. 27.
    Q. Fu, S.M. Huang, J. Liu, J. Phys. Chem. B 108, 6124 (2004)CrossRefGoogle Scholar
  28. 28.
    M.C. Schnitzler, A.J.G. Zarbin, J. Solid State Chem. 182, 2867 (2009)CrossRefGoogle Scholar
  29. 29.
    M.A. Garcia-Lobato, A.I. Martinez, M. Castro-Roman, C. Falcony, L. Escobar-Alarcon, Phys. B Condens. Matter 406, 1496 (2011)CrossRefGoogle Scholar
  30. 30.
    M.A. Garcia-Lobato, A.I. Martinez, D.L. Perry, M. Castro-Roman, R.A. Zarate, L. Escobar-Alarcon, Sol. Energy Mater. Sol. Cells 95, 751 (2011)CrossRefGoogle Scholar
  31. 31.
    M. Hanesch, Geophys. J. Int. 177, 941 (2009)CrossRefGoogle Scholar
  32. 32.
    B.S. Zhu, Y. Jia, Z. Jin, B. Sun, T. Luo, L.T. Kong, J.H. Liu, RSC Adv. 5, 84389 (2015)CrossRefGoogle Scholar
  33. 33.
    T.B. Limbu, K.R. Hahn, F. Mendoza, S. Sahoo, J.J. Razink, R.S. Katiyar, B.R. Weiner, G. Morell, Carbon N. Y. 117, 367 (2017)CrossRefGoogle Scholar
  34. 34.
    A. Ermolieff, A. Chabli, F. Pierre, G. Rolland, D. Rouchon, C. Vannuffel, C. Vergnaud, J. Baylet, M.N. Séméria, Surf. Interface Anal. 31, 185 (2001)CrossRefGoogle Scholar
  35. 35.
    J. Oliva, C. Gomez-Solis, L.A. Diaz-Torres, A. Martinez-Luevanos, A.I. Martinez, E. Coutiño-Gonzalez, J. Phys. Chem. C 7, 10375 (2018)Google Scholar
  36. 36.
    F.T. Johra, J.W. Lee, W.G. Jung, J. Ind. Eng. Chem. 20, 2883 (2014)CrossRefGoogle Scholar
  37. 37.
    X. Yang, C. Chen, J. Li, G. Zhao, X. Ren, X. Wang, RSC Adv. 2, 8821 (2012)CrossRefGoogle Scholar
  38. 38.
    J. Wu, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Appl. Phys. Lett. 92, (2008)Google Scholar
  39. 39.
    D. Sinar, G.K. Knopf, S. Nikumb, 14th IEEE International Conference Nanotechnology, IEEE-NANO 2014 549 (2014)Google Scholar
  40. 40.
    X. Zhang, J. Zhang, D. Phuyal, J. Du, L. Tian, V.A. Öberg, M.B. Johansson, U.B. Cappel, O. Karis, J. Liu, H. Rensmo, G. Boschloo, E.M.J. Johansson, Adv. Energy Mater. 1702049, 1702049 (2017)Google Scholar
  41. 41.
    B.S. Yilbas, A. Ibrahim, H. Ali, M. Khaled, T. Laoui, Appl. Surf. Sci. 442, 213 (2018)CrossRefGoogle Scholar
  42. 42.
    L.F. Lima, C.F. Matos, L.C. Gonçalves, R.V. Salvatierra, C.E. Cava, A.J.G. Zarbin, L.S. Roman, J. Phys. D. Appl. Phys. 49, (2016)Google Scholar
  43. 43.
    R. Cruz, D.A. Pacheco, Tanaka, A. Mendes, Sol. Energy 86, 716 (2012)CrossRefGoogle Scholar
  44. 44.
    H.M. Nilsson, L. de Knoop, J. Cumings, E. Olsson, Carbon N. Y. 113, 340 (2017)CrossRefGoogle Scholar
  45. 45.
    C.J. Chen, D.H. Chen, Nanoscale Res. Lett. 8, 1 (2013)CrossRefGoogle Scholar
  46. 46.
    J.W. Suk, R.D. Piner, J. An, R.S. Ruoff, ACS Nano 4, 6557 (2010)Google Scholar
  47. 47.
    J.T. Robinson, M. Zalalutdinov, E.S. Snow, J.W. Baldwin, Z. Wei, P. Sheehan, B.H. Houston, Nano Lett. 8, 3441 (2008)CrossRefGoogle Scholar
  48. 48.
    C. Gómez-navarro, M. Burghard, K. Kern, Nano Lett. 8, 2045 (2008)CrossRefGoogle Scholar
  49. 49.
    J. Malzbender, G. De With, J.M.J. Den Toonder, Thin Solid Films 366, 139 (2000)CrossRefGoogle Scholar
  50. 50.
    E. Hernández, C. Goze, P. Bernier, A. Rubio, Phys. Rev. Lett. 80, 4502 (1998)CrossRefGoogle Scholar
  51. 51.
    R. Ansari, S. Ajori, B. Motevalli, Superlattices Microstruct. 51, 274 (2012)CrossRefGoogle Scholar
  52. 52.
    K.N. Kudin, G.E. Scuseria, B.I. Yakobson, Phys. Rev. B 64, 235406 (2001)CrossRefGoogle Scholar
  53. 53.
    F. Memarian, A. Fereidoon, M. Darvish, Ganji, Superlattices Microstruct. 85, 348 (2015)CrossRefGoogle Scholar
  54. 54.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)CrossRefGoogle Scholar
  55. 55.
    Y. Zhang, C. Pan, Diam. Relat. Mater. 24, 1 (2012)CrossRefGoogle Scholar
  56. 56.
    Z. Gao, Y. Zhang, Y. Fu, M. Yuen, J. Liu, Carbon N. Y. 61, 342 (2013)CrossRefGoogle Scholar
  57. 57.
    T. Hirasawa, H. Kotera, S. Tawa, S. Shima, in Proceedings of 2nd International Conference Intelligent Processing Manufacturing of Materials IPMM 1999 (1999), pp. 221–226Google Scholar
  58. 58.
    E. Huerta, A.I. Oliva, F. Avilés, J. González-Hernández, J.E. Corona, J. Nanomater. 2012, 895131 (2012)Google Scholar
  59. 59.
    D.Y.W. Yu, F. Spaepen, J. Appl. Phys. 95, 2991 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cinvestav Unidad SaltilloRamos ArizpeMexico
  2. 2.CONACYT-Facultad de Ciencias QuímicasUniversidad Autónoma de CoahuilaSaltilloMexico
  3. 3.Departamento de Física, Facultad de CienciasUniversidad Católica del NorteAntofagastaChile
  4. 4.Corporación Mexicana de Investigación en Materiales S.A. de C.VSaltilloMexico

Personalised recommendations