Advertisement

Synthesis of silver bromide/graphene oxide composite and its enhanced visible light photocatalytic efficiency and mechanism for elimination of parachlorobenzoic acid

  • Li-chao Nengzi
  • You-zhong Zhang
  • Jin-Hua Ma
  • Hai-Tao Li
  • Qingfeng ChengEmail author
  • Xiuwen ChengEmail author
Article
  • 16 Downloads

Abstract

In this study, silver bromide/graphene oxide (AgBr/GO) composite was synthesized by a simple ultrasonic-precipitation process. Afterwards, series of measurments demonstrated that AgBr/GO displayed improved visible light absorbance and higher photogenerated charge carriers. In addition, we proposed the enhanced visible light driven photocatalytic mechanism of AgBr/GO. Besides, AgBr/GO composite exhibits a higher PC activity (99.9%) for degradation of parachlorobenzoic acid than that of pristine AgBr within 40 min illumination. Finally, the degradation pathways of parachlorobenzoic acid were concluded. This study provides a new insight to promote the development of new fashioned photocatalytic decomposition of emerging contaminants from natural water bodies.

Notes

Acknowledgements

This work was kindly supported by National Natural Science Foundation of China (51808062, 51608061).

References

  1. 1.
    S.S. Xue, H.B. He, Z. Wu, C.L. Yu, Q.Z. Fan, G.M. Peng, K. Yang, An interesting Eu, F-codoped BiVO4 microsphere with enhanced photocatalytic performance. J. Alloys Compd. 694, 989–997 (2017)CrossRefGoogle Scholar
  2. 2.
    G. Zerjav, M.S. Arshad, P. Djinovic, J. Zavasnik, A. Pintar, Electron trapping energy states of TiO2-WO3 composites and their influence on photocatalytic degradation of bisphenol A. Appl. Catal. B 209, 273–284 (2017)CrossRefGoogle Scholar
  3. 3.
    R. Zouzelka, J. Rathousky, Photocatalytic abatement of NOx pollutants in the air using commercial functional coating with porous morphology. Appl. Catal. B 217, 466–476 (2017)CrossRefGoogle Scholar
  4. 4.
    Y.J. Zou, J.W. Shi, D.D. Ma, Z.Y. Fan, L. Lu, C.M. Niu, In situ synthesis of C-doped TiO2@g-C3N4 core-shell hollow nanospheres with enhanced visible-light photocatalytic activity for H2 evolution. Chem. Eng. J. 322, 435–444 (2017)CrossRefGoogle Scholar
  5. 5.
    S.C. Wu, C.S. Tan, M.H. Huang, Strong facet effects on interfacial charge transfer revealed through the examination of photocatalytic activities of various Cu2O-ZnO heterostructures. Adv. Funct. Mater. 27, 1604635 (2017)CrossRefGoogle Scholar
  6. 6.
    D.W. Park, K. Lee, J.C. Chae, T. Kudo, C.K. Kim, Genetic structure of xyl gene cluster responsible for complete degradation of (4-chloro)benzoate from Pseudomonas sp. S-47. J. Microbiol. Biotechnol. 14, 483–489 (2004)Google Scholar
  7. 7.
    C. Creaser, L.F. dos Santos, D.G. Lamarca, A. New, J.C. Wolff, Biodegradation studies of 4-fluorobenzoic acid and 4-fluorocinnamic acid: an evaluation of membrane inlet mass spectrometry as an alternative to high performance liquid chromatography and ion chromatography. Anal. Chim. Acta 454, 137–145 (2002)CrossRefGoogle Scholar
  8. 8.
    H.R. Yi, K.H. Min, C.K. Kim, J.O. Ka, Phylogenetic and phenotypic diversity of 4-chlorobenzoate-degrading bacteria isolated from soils. FEMS Microbiol. Ecol. 31, 53–60 (2000)CrossRefGoogle Scholar
  9. 9.
    E.C. Wert, S. Gonzales, M.M. Dong, F.L. Rosario-Ortiz, Evaluation of enhanced coagulation pretreatment to improve ozone oxidation efficiency in wastewater. Water Res. 45, 5191–5199 (2011)CrossRefGoogle Scholar
  10. 10.
    Y.H. Dao, J. De Laat, Hydroxyl radical involvement in the decomposition of hydrogen peroxide by ferrous and ferric-nitrilotriacetate complexes at neutral pH. Water Res. 45, 3309–3317 (2011)CrossRefGoogle Scholar
  11. 11.
    R.M. El-Sherif, T.A. Lasheen, E.A. Jebril, Fabrication and characterization of CeO2-TiO2-Fe2O3 magnetic nanoparticles for rapid removal of uranium ions from industrial waste solutions. J. Mol. Liq. 241, 260–269 (2017)CrossRefGoogle Scholar
  12. 12.
    F.J. Chen, P.L. Ho, R. Ran, W.M. Chen, Z.C. Si, X.D. Wu, D. Weng, Z.H. Huang, C. Lee, Synergistic effect of CeO2 modified TiO2 photocatalyst on the enhancement of visible light photocatalytic performance. J. Alloys Compd. 714, 560–566 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Riyas, P.N.M. Das, Effect of Fe2O3 and Cr2O3 on anatase-rutile transformation in TiO2. Br. Ceram. Trans. 103, 23–28 (2004)CrossRefGoogle Scholar
  14. 14.
    S. Byun, B. Kim, S. Jeon, B. Shin, Effects of a SnO2 hole blocking layer in a BiVO4-based photoanode on photoelectrocatalytic water oxidation. J. Mater. Chem. A 5, 6905–6913 (2017)CrossRefGoogle Scholar
  15. 15.
    W. Ahmad, T. Noor, M. Zeeshan, Effect of synthesis route on catalytic properties and performance of Co3O4/TiO2 for carbon monoxide and hydrocarbon oxidation under real engine operating conditions. Catal. Commun. 89, 19–24 (2017)CrossRefGoogle Scholar
  16. 16.
    S. Zou, S. Zhong, C. Lv, C. Wang, T. Chen, Z.J. Liu, S.Y. Zhang, Effect of synthesis highly ordered TiO2 nanotube arrays with enhanced photocatalytic properties by time, electrolytic voltage, heating temperature and Polyvinyl pyrrolidone. J. Porous Mater. 23, 1239–1247 (2016)CrossRefGoogle Scholar
  17. 17.
    Y. Zhou, C.H. Chen, N.N. Wang, Y.Y. Li, H.M. Ding, Stable Ti3+ self-doped anatase-rutile mixed TiO2 with enhanced visible light utilization and durability. J. Phys. Chem. C 120, 6116–6124 (2016)CrossRefGoogle Scholar
  18. 18.
    P. Zhang, Y. Liu, B.Z. Tian, Y.S. Luo, J.L. Zhang, Synthesis of core-shell structured CdS@CeO2 and CdS@TiO2 composites and comparison of their photocatalytic activities for the selective oxidation of benzyl alcohol to benzaldehyde. Catal. Today 281, 181–188 (2017)CrossRefGoogle Scholar
  19. 19.
    X.Z. Yue, S.S. Yi, R.W. Wang, Z.T. Zhang, S.L. Qiu, A novel architecture of dandelion-like Mo2C/TiO2 heterojunction photocatalysts towards high-performance photocatalytic hydrogen production from water splitting. J. Mater. Chem. A 5, 10591–10598 (2017)CrossRefGoogle Scholar
  20. 20.
    H.Z. Yao, W.Y. Fu, L. Liu, X. Li, D. Ding, P.Y. Su, S. Feng, H.B. Yang, Hierarchical photoanode of rutile TiO2 nanorods coupled with anatase TiO2 nanosheets array for photoelectrochemical application. J. Alloys Compd. 680, 206–211 (2016)CrossRefGoogle Scholar
  21. 21.
    P.H. Wang, Ag-AgBr/TiO2/RGO nanocomposite: Synthesis, characterization, photocatalytic activity and aggregation evaluation. J. Environ. Sci. 56, 202–213 (2017)CrossRefGoogle Scholar
  22. 22.
    X.L. Miao, X.P. Shen, J.J. Wu, Z.Y. Ji, J.H. Wang, L.R. Kong, M.M. Liu, C.S. Song, Fabrication of an all solid Z-scheme photocatalyst g-C3N4/GO/AgBr with enhanced visible light photocatalytic activity. Appl. Catal. A 539, 104–113 (2017)CrossRefGoogle Scholar
  23. 23.
    W.Y. Gao, C.X. Ran, M.Q. Wang, L. Li, Z.W. Sun, X. Yao, The role of reduction extent of graphene oxide in the photocatalytic performance of Ag/AgX (X = Cl, Br)/rGO composites and the pseudo-second-order kinetics reaction nature of the Ag/AgBr system. Phys. Chem. Chem. Phys. 18, 18219–18226 (2016)CrossRefGoogle Scholar
  24. 24.
    P.H. Wang, Y.X. Tang, Z.L. Dong, Z. Chen, T.T. Lim, Ag-AgBr/TiO2/RGO nanocomposite for visible-light photocatalytic degradation of penicillin G. J. Mater. Chem. A 1, 4718–4727 (2013)CrossRefGoogle Scholar
  25. 25.
    Y.Y. Bai, F.R. Wang, J.K. Liu, A new complementary catalyst and catalytic mechanism: Ag2MoO4/Ag/AgBr/GO heterostructure. Ind. Eng. Chem. Res. 55, 9873–9879 (2016)CrossRefGoogle Scholar
  26. 26.
    A. Esmaeili, M.H. Entezari, Sonosynthesis of an Ag/AgBr/Graphene-oxide nanocomposite as a solar photocatalyst for efficient degradation of methyl orange. J. Colloid Interface Sci. 466, 227–237 (2016)CrossRefGoogle Scholar
  27. 27.
    H. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M. Ganjali, Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors. Appl. Surf. Sci. 423, 1025–1034 (2017)CrossRefGoogle Scholar
  28. 28.
    A. Khoshroo, L. Hosseinzadeh, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, H. Ehrlich, Development of electrochemical sensor for sensitive determination of oxazepam based on silver-platinum core–shell nanoparticles supported on graphene. J. Electroanal. Chem. 823, 61–66 (2018)CrossRefGoogle Scholar
  29. 29.
    J. Amani, M. Maleki, A. Khoshroo, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, An electrochemical immunosensor based on poly p-phenylenediamine and graphene nanocomposite for detection of neuron-specific enolase via electrochemically amplified detection. Anal. Biochem. 548, 53–59 (2018)CrossRefGoogle Scholar
  30. 30.
    M. Rostami, M. Rahimi-Nasrabadi, M.R. Ganjali, F. Ahmadi, A.F. Shojaei, M.D. Rafiee, Facile synthesis and characterization of TiO2-graphene-ZnFe2-xTbx O4 ternary nano-hybrids. J. Mater. Sci. 52, 7008–7016 (2017)CrossRefGoogle Scholar
  31. 31.
    P.Q. Wang, T. Chen, B.Y. Yu, P. Tao, Y. Bai, Tollen’s-assisted preparation of Ag3PO4/GO photocatalyst with enhanced photocatalytic activity and stability. J. Taiwan Inst. Chem. Eng. 62, 267–274 (2016)CrossRefGoogle Scholar
  32. 32.
    Z.Y. Ji, J.L. Zhao, X.P. Shen, X.Y. Yue, A.H. Yuan, H. Zhou, J. Yang, Construction of magnetically separable Ag3PO4/Fe3O4/GO composites as recyclable photocatalysts. Ceram. Int. 41, 13509–13515 (2015)CrossRefGoogle Scholar
  33. 33.
    W.Y. Zhu, F.Q. Sun, R. Goei, Y. Zhou, Facile fabrication of RGO-WO3 composites for effective visible light photocatalytic degradation of sulfamethoxazole. Appl. Catal. B 207, 93–102 (2017)CrossRefGoogle Scholar
  34. 34.
    F.Y. Chen, W.,J. An, L. Liu, Y.H. Liang, W.Q. Cui, Highly efficient removal of bisphenol A by a three-dimensional graphene hydrogel-AgBr@rGO exhibiting adsorption/photocatalysis synergy. Appl. Catal. B 217, 65–80 (2017)CrossRefGoogle Scholar
  35. 35.
    X.L. Yang, F.F. Qian, Y. Wang, M.L. Li, J.R. Lu, Y.M. Li, M.T. Bao, Constructing a novel ternary composite (C16H33(CH3)(3)N(4)W10O32/g-C3N4/rGO with enhanced visible-light-driven photocatalytic activity for degradation of dyes and phenol. Appl. Catal. B 200, 283–296 (2017)CrossRefGoogle Scholar
  36. 36.
    A. Omidvar, B. Jaleh, M. Nasrollahzadeh, Preparation of the GO/Pd nanocomposite and its application for the degradation of organic dyes in water. J. Colloid Interface Sci. 496, 44–50 (2017)CrossRefGoogle Scholar
  37. 37.
    S. Tangestaninejad, V. Mirkhani, M. Moghadam, I. Mohammadpoor-Baltork, E. Shams, H. Salavati, Hydrocarbon oxidation catalyzed by vanadium polyoxometalate supported on mesoporous MCM-41 under ultrasonic irradiation. Ultrason. Sonochem. 15, 438–447 (2008)CrossRefGoogle Scholar
  38. 38.
    W.F. Liu, J. Zhang, C. Cheng, G.P. Tian, C.L. Zhang, Ultrasonic-assisted sodium hypochlorite oxidation of activated carbons for enhanced removal of Co(II) from aqueous solutions. Chem. Eng. J. 175, 24–32 (2011)CrossRefGoogle Scholar
  39. 39.
    P. Kim-Lohsoontorn, C. Paichitra, S. Vorathamthongdee, P. Seeharaj, Low-temperature preparation of BaCeO3 through ultrasonic-assisted precipitation for application in solid oxide electrolysis cell. Chem. Eng. J. 278, 13–18 (2015)CrossRefGoogle Scholar
  40. 40.
    H.R. Wang, L. Zou, Y.C. Shan, X. Wang, G.O. Ternary, Ag3PO4/AgBr composite as an efficient visible-light-driven photocatalyst. Mater. Res. Bull. 97, 189–194 (2018)CrossRefGoogle Scholar
  41. 41.
    X.L. Miao, X.P. Shen, J.J. Wu, Z.Y. Jia, J.H. Wang, L.R. Kong, M.M. Liu, C.S. Song, Fabrication of an all solid Z-scheme photocatalyst g-C3N4/GO/AgBr with enhanced visible light photocatalytic activity. Appl. Catal. A 539, 104–113 (2017)CrossRefGoogle Scholar
  42. 42.
    X. Zhang, P.S. Kumar, V. Aravindan, H.H. Liu, J. Sundaramurthy, S.G. Mhaisalkar, H.M. Duong, S. Ramakrishna, S. Madhavi, Electrospun TiO2-graphene composite nanofibers as a highly durable insertion anode for lithium ion batteries. J. Phys. Chem. C 116, 14780–14788 (2012)CrossRefGoogle Scholar
  43. 43.
    B. Feng, Z.Y. Wu, J.S. Liu, K.J. Zhu, Z.Q. Li, X. Jin, Y.D. Hou, Q.Y. Xi, M.Q. Cong, P.C. Liu, Q.L. Gu, Combination of ultrafast dye-sensitized-assisted electron transfer process and novel Z-scheme system: AgBr nanoparticles interspersed MoO3 nanobelts for enhancing photocatalytic performance of RhB. Appl. Catal. B 206, 242–251 (2017)CrossRefGoogle Scholar
  44. 44.
    D.D. Yu, J. Bai, H. Liang, C.P. Li, Electrospinning, solvothermal, and self-assembly synthesis of recyclable and renewable AgBr-TiO2/CNFs with excellent visible-light responsive photocatalysis. J. Alloys Compd. 683, 329–338 (2016)CrossRefGoogle Scholar
  45. 45.
    J.Y. Si, Y. Liu, S.Z. Chang, D. Wu, B.Z. Tian, J.L. Zhang, AgBr@TiO2/GO ternary composites with enhanced photocatalytic activity for oxidation of benzyl alcohol to benzaldehyde. Res. Chem. Intermed. 43, 2067–2080 (2017)CrossRefGoogle Scholar
  46. 46.
    B.Q. Lu, N. Ma, Y.P. Wang, W.Q. Yi, H.H. Hu, J.H. Zhao, D.Y. Liang, S. Xu, X.Y. Li, Z.Y. Zhu, C. Cui, Visiblelightdriven TiO2/Ag3PO4/GO heterostructure photocatalyst with dual-channel for photo-generated charges separation. J. Alloys Compd. 630, 163–171 (2015)CrossRefGoogle Scholar
  47. 47.
    X.Y. Zhang, H.P. Li, X.L. Cui, Y.H. Lin, Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem. 20, 2801–2806 (2010)CrossRefGoogle Scholar
  48. 48.
    C.F. Liu, C.P. Huang, C.C. Hu, Y.J. Juang, C.P. Huang, Photoelectrochemical degradation of dye wastewater on TiO2-coated titanium electrode prepared by electrophoretic deposition. Sep. Purif. Technol. 165, 145–153 (2016)CrossRefGoogle Scholar
  49. 49.
    Z.J. Li, Y. Qu, K. Hu, M. Humayun, S.Y. Chen, L.Q. Jing, Improved photoelectrocatalytic activities of BiOCl with high stability for water oxidation and MO degradation by coupling RGO and modifying phosphate groups to prolong carrier lifetime. Appl. Catal. B 203, 355–362 (2017)CrossRefGoogle Scholar
  50. 50.
    F. Fu, Y. Zhang, L. Yan, Y.F. Wang, X.M. Gao, D.J. Wang, Preparation of efficient Ag/AgBr/TiO2 visible light photocatalyst for destruction of MB. J. Mater. Sci. Mater. Electron. 28, 691–696 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Resources and EnvironmentXichang UniversityXichangPeople’s Republic of China
  2. 2.Academy of Environmental and Economics SciencesXichang UniversityXichangPeople’s Republic of China
  3. 3.College of Resources and EnvironmentChengdu University of Information TechnologyChengduPeople’s Republic of China
  4. 4.Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental SciencesLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations