Advertisement

Synthesis of SrCoO3 perovskite as W-based double perovskite and its structural properties

  • M. Dhilip
  • M. Manikandan
  • S. Ramesh Kumar
  • V. Jayalakshmi
  • V. Anbarasu
  • K. Saravana KumarEmail author
Article
  • 38 Downloads

Abstract

The double-perovskites, (AA′)(BB′)O6, are gaining importance due to their flexibility in the choice of ions, and the wide application potential in magnetic, electrical, optical and thermal applications. Especially, the tungsten-based double-perovskites been explored for their optical properties. Hence, the double perovskite oxide, Sr2CoWO6, was synthesized using conventional solid-state reaction method. The Rietveld refinement data derived from powder X-ray diffraction pattern confirms the single-phase formation of Sr2CoWO6 compound. The deconvolution of Raman’s spectra exhibits first-order Raman’s modes of Sr2CoWO6. The observed phonon modes found to be in good agreement with the corresponding theoretical predictions for the space group of I4/m. The phosphor could be excited by the UV light region from 350 to 450 nm, and it exhibits blue (390 nm) to 4A2 → 2T2 transition. The compound is stable with antiferromagnetic ordering, as evident from the magnetization loop and theoretical calculations. Band structure calculations for tetragonal Sr2CoWO6 predict an energy gap in both spin-up and spin-down configurations.

Notes

Acknowledgements

Author KSK thanks SRM IST for providing support through research Grants. Authors are thankful to members of XCGS, MSG, IGCAR for XRD measurements of the samples.

References

  1. 1.
    C.A. López, M.E. Saleta, J. Curiale, R.D. Sánchez, Mater. Res. Bull. 47, 1158 (2012).  https://doi.org/10.1016/j.materresbull.2012.02.008 CrossRefGoogle Scholar
  2. 2.
    A. Gassoumi, M.M. Saad, Mater. Sci. Semicond. Process. 50, 14 (2016).  https://doi.org/10.1016/j.mssp.2016.04.003 CrossRefGoogle Scholar
  3. 3.
    S. Vasala, M. Karppinen Prog. Solid State Chem. 43, 1. (2015)  https://doi.org/10.1016/j.progsolidstchem.2014.08.001 CrossRefGoogle Scholar
  4. 4.
    D.D. Khalyavin, J.P. Han, A.M.R. Senos, P. Mantas, Mater. Sci. Forum 455–456, 30–34 (2004)CrossRefGoogle Scholar
  5. 5.
    H. Iwakura, H. Einaga, Y. Teraoka, J. Novel Carbon Res. Sci. 3, 1 (2011)Google Scholar
  6. 6.
    C. Ma, X. Wang, M. Cao et al., J. Mater. Sci. 29, 17818 (2018).  https://doi.org/10.1007/s10854-018-9893-3 Google Scholar
  7. 7.
    Y. Markandeya, Y.S. Reddy, S. Bale, G. Bhikshamaiah, J. Mater. Sci. 29, 6711 (2018).  https://doi.org/10.1007/s10854-018-8657-4 Google Scholar
  8. 8.
    D.K. Mahato, T.P. Sinha, J. Mater. Sci. 24, 4399 (2013).  https://doi.org/10.1007/s10854-013-1416-7 Google Scholar
  9. 9.
    D.E. Bugaris, J.P. Hodges, A. Huq, H.-C. zur Loye, J. Solid State Chem. 184, 2293 (2011).  https://doi.org/10.1016/j.jssc.2011.06.015 CrossRefGoogle Scholar
  10. 10.
    D.D. Khalyavin, J. Han, A.M.R. Senos, P.Q. Mantas, J. Mater. Res. 18, 2600 (2011).  https://doi.org/10.1557/JMR.2003.0364 CrossRefGoogle Scholar
  11. 11.
    G. Madariaga, A. Faik, T. Breczewski, J.M. Igartua, Acta Crystallogr. B 66, 109 (2010).  https://doi.org/10.1107/S0108768110002041 CrossRefGoogle Scholar
  12. 12.
    M. Gateshki, J.M. Igartua, J. Phys. 16, 6639 (2004)Google Scholar
  13. 13.
    B. Manoun, J.M. Igartua, M. Gateshki, S.K. Saxena, J. Mol. Struct. 888, 244 (2008).  https://doi.org/10.1016/j.molstruc.2007.12.028 CrossRefGoogle Scholar
  14. 14.
    B. Manoun, J.M. Igartua, M. Gateshki, S.K. Saxena, J. Phys. 16, 8367 (2004)Google Scholar
  15. 15.
    S.J. Patwe, S.N. Achary, M.D. Mathews, A.K. Tyagi, J. Alloy. Compd. 390, 100 (2005).  https://doi.org/10.1016/j.jallcom.2004.05.093 CrossRefGoogle Scholar
  16. 16.
    S.Z. Tian, J.C. Zhao, C.D. Qiao, X.L. Ji, B.Z. Jiang, Mater. Lett. 60, 2747 (2006).  https://doi.org/10.1016/j.matlet.2006.01.083 CrossRefGoogle Scholar
  17. 17.
    G. Blasse, A.F. Corsmit, J. Solid State Chem. 6, 513 (1973).  https://doi.org/10.1016/S0022-4596(73)80008-8 CrossRefGoogle Scholar
  18. 18.
    B. Manoun, J.M. Igartua, P. Lazor, J. Mol. Struct. 971, 18 (2010).  https://doi.org/10.1016/j.molstruc.2010.02.060 CrossRefGoogle Scholar
  19. 19.
    H.W. Eng, P.W. Barnes, B.M. Auer, P.M. Woodward, J. Solid State Chem. 175, 94 (2003).  https://doi.org/10.1016/S0022-4596(03)00289-5 CrossRefGoogle Scholar
  20. 20.
    A.K. Azad, S.G. Eriksson, S.A. Ivanov et al., Ferroelectrics 269, 105 (2002).  https://doi.org/10.1080/00150190211167 CrossRefGoogle Scholar
  21. 21.
    R.P. Borges, R.M. Thomas, C. Cullinan et al., J. Phys. 11, L445 (1999)Google Scholar
  22. 22.
    C. Ritter, M.R. Ibarra, L. Morellon, J. Blasco, J. García, J.M.D. Teresa, J. Phys. 12, 8295 (2000)Google Scholar
  23. 23.
    M. Retuerto, F. Jiménez-Villacorta, M.J. Martínez-Lope et al., Phys. Chem. Chem. Phys. 12, 13616 (2010).  https://doi.org/10.1039/C004370B CrossRefGoogle Scholar
  24. 24.
    D. Serrate, J.M.D. Teresa, M.R. Ibarra, J. Phys. 19, 023201 (2007)Google Scholar
  25. 25.
    M.W. Lufaso, P.W. Barnes, P.M. Woodward, Acta Crystallogr. B 62, 397 (2006).  https://doi.org/10.1107/S010876810600262X CrossRefGoogle Scholar
  26. 26.
    M.C. Viola, M.J. Martínez-Lope, J.A. Alonso et al., Chem. Mater. 15, 1655 (2003).  https://doi.org/10.1021/cm0208455 CrossRefGoogle Scholar
  27. 27.
    C.A. López, M.C. Viola, J.C. Pedregosa, R.E. Carbonio, R.D. Sánchez, M.T. Fernández-Díaz, J. Solid State Chem. 181, 3095 (2008).  https://doi.org/10.1016/j.jssc.2008.08.007 CrossRefGoogle Scholar
  28. 28.
    G. Mandal, D. Jha, A.K. Himanshu et al. AIP Conf. Proc. 1832, 140039. (2017)  https://doi.org/10.1063/1.4980821 CrossRefGoogle Scholar
  29. 29.
    M. Bonilla, D.A. Landínez Téllez, J.Arbey Rodríguez, J.A. Aguiar, J. Roa-Rojas, J. Magn. Magn. Mater. 320, e397 (2008).  https://doi.org/10.1016/j.jmmm.2008.02.179 CrossRefGoogle Scholar
  30. 30.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).  https://doi.org/10.1103/PhysRevB.50.17953 CrossRefGoogle Scholar
  31. 31.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996).  https://doi.org/10.1103/PhysRevB.54.11169 CrossRefGoogle Scholar
  32. 32.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).  https://doi.org/10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  33. 33.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976).  https://doi.org/10.1103/PhysRevB.13.5188 CrossRefGoogle Scholar
  34. 34.
    V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyżyk, G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).  https://doi.org/10.1103/PhysRevB.48.16929 CrossRefGoogle Scholar
  35. 35.
    A. Togo, I. Tanaka, Scripta Materialia 108, 1. (2015)  https://doi.org/10.1016/j.scriptamat.2015.07.021 CrossRefGoogle Scholar
  36. 36.
    M. Gateshki, J.M. Igartua, E. Hernández-Bocanegra, J. Phys. 15, 6199 (2003)Google Scholar
  37. 37.
    A.P. Ayala, I. Guedes, E.N. Silva, M.S. Augsburger, M.C. Viola, J.C. Pedregosa, J. Appl. Phys. 101: 123511 (2007).  https://doi.org/10.1063/1.2745088 CrossRefGoogle Scholar
  38. 38.
    T. Hashemifar, A. Mokhtari, V. Soleimanian, J. Supercond. Novel Magn. 30, 497 (2017).  https://doi.org/10.1007/s10948-016-3793-7 CrossRefGoogle Scholar
  39. 39.
    Y. Zheng, W. Zhuang, X. Xing et al., RSC Adv. 6, 68852 (2016).  https://doi.org/10.1039/C6RA11258G CrossRefGoogle Scholar
  40. 40.
    E.A. Davis, N.F. Mott, Phil. Mag. 22, 0903 (1970).  https://doi.org/10.1080/14786437008221061 CrossRefGoogle Scholar
  41. 41.
    R. Palai, R.S. Katiyar, H. Schmid et al., Phys. Rev. B 77, 014110 (2008).  https://doi.org/10.1103/PhysRevB.77.014110 CrossRefGoogle Scholar
  42. 42.
    S. Kamba, V. Goian, V. Skoromets et al., Phys. Rev. B 89, 064308 (2014).  https://doi.org/10.1103/PhysRevB.89.064308 CrossRefGoogle Scholar
  43. 43.
    S. Saha, B.-C. Cao, M. Motapothula et al., Sci. Rep. 6, 36859 (2016).  https://doi.org/10.1038/srep36859 CrossRefGoogle Scholar
  44. 44.
    H. Gretarsson, J. Sauceda, N.H. Sung et al., Phys. Rev. B 96, 115138 (2017).  https://doi.org/10.1103/PhysRevB.96.115138 CrossRefGoogle Scholar
  45. 45.
    M.O. Ramirez, M. Krishnamurthi, S. Denev et al., Appl. Phys. Lett. 92, 022511 (2008).  https://doi.org/10.1063/1.2829681 CrossRefGoogle Scholar
  46. 46.
    M.O. Ramirez, A. Kumar, S.A. Denev et al., Appl. Phys. Lett. 94, 161905 (2009).  https://doi.org/10.1063/1.3118576 CrossRefGoogle Scholar
  47. 47.
    P. Suresh, S. Srinath, J. Alloys Compd. (2015).  https://doi.org/10.1016/jjallcom201507152 Google Scholar
  48. 48.
    A. Chakravarti, R. Ranganathan, C. Bansal, Solid State Commun. 82, 591 (1992).  https://doi.org/10.1016/0038-1098(92)90107-K CrossRefGoogle Scholar
  49. 49.
    R.C. Kambale, P.A. Shaikh, S.S. Kamble, Y.D. Kolekar, J. Alloy. Compd. 478, 599 (2009).  https://doi.org/10.1016/j.jallcom.2008.11.101 CrossRefGoogle Scholar
  50. 50.
    X. Sun, Z. Hao, C. Li et al., J. Lumin. 134, 191 (2013).  https://doi.org/10.1016/j.jlumin.2012.08.049 CrossRefGoogle Scholar
  51. 51.
    S. Mochizuki, T. Saito, Physica B 404, 4850 (2009).  https://doi.org/10.1016/j.physb.2009.08.166 CrossRefGoogle Scholar
  52. 52.
    S. Gnanam, V. Rajendran, J. Sol-Gel. Sci. Technol. 58, 62 (2011).  https://doi.org/10.1007/s10971-010-2356-9 CrossRefGoogle Scholar
  53. 53.
    M.A. Subhan, T. Ahmed, N. Uddin, A.K. Azad, K. Begum, Spectrochim. Acta A 136, 824 (2015).  https://doi.org/10.1016/j.saa.2014.09.100 CrossRefGoogle Scholar
  54. 54.
    B. Manoun, J.M. Igartua, P. Lazor, A. Ezzahi, J. Mol. Struct. 1029, 81 (2012).  https://doi.org/10.1016/j.molstruc.2012.05.077 CrossRefGoogle Scholar
  55. 55.
    D. Xu, Z. Yang, J. Sun, X. Gao, J. Du, J. Mater. Sci. 27, 8370 (2016).  https://doi.org/10.1007/s10854-016-4848-z Google Scholar
  56. 56.
    A. Titipun Thongtem, S. Phuruangrat, Thongtem, J. Ceramic Process. Res. 9, 258 (2008)Google Scholar
  57. 57.
    F. Mao, Y. Zhang, J. Wu et al., RSC Adv. 5, 99398 (2015).  https://doi.org/10.1039/C5RA19384B CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsSRM Institute of Science and TechnologyChennaiIndia
  2. 2.Centre for Nanoscience & TechnologyAnna UniversityChennaiIndia

Personalised recommendations