Synthesis, characterization and gas sensing performance of V2O5 nano-structure on PET substrate
- 28 Downloads
Abstract
VO2 micro rods and V2O5 nano rod (NR) were fabricated through wet chemical method by changing annealing temperature. The influence of annealing-induced on composition, microstructure, surface morphology and optical properties of prepared samples were characterized through XRD, field emission scanning electron microscopy (SEM)–EDS, HRTEM and UV studies respectively. The structural analysis revealed that at 90 °C monoclinic VO2 phase formation. The annealing temperature from 300 to 700 °C, were found to an orthorhombic V2O5 phase formation. From SEM result we found that microcluster, V2O5 NR with small particle and trapping behaviour of V2O5 NR 90 °C, 300–600 °C and 700 °C respectively. Gas sensing tests reveal that the V2O5 NR on PET substrate has remarkably enhanced performance. It could be detected ammonia gas in a wide concentration range with the very high response, fast response–recovery time, good selectivity and stable repeatability. The superior sensing features indicate the present V2O5 NRs are promising for gas sensors.
Notes
Acknowledgements
Authors wish to express their sincere thanks to the UGC-Rajiv Gandhi National Fellowship at New Delhi. Centre for Nanotechnology and Advanced Biomaterial (CeNTAB) at SASTRA University for helpful to carry out this work in Gas Sensor Application.
References
- 1.N. Pinna, M. Willinger, K. Weiss, J. Urban, R. Schlo, Nano Lett. 3, 1131–1134 (2003)Google Scholar
- 2.H. Yu, W. Chen, Y. Dai, L.Q. Mai, Y.Y. Qi, J.F. Peng, J Wuhan Univ. Technol. Mater. Sci. 21, 38 (2006)Google Scholar
- 3.D.P. Norten, Mater. Sci. Eng. R 43, 139 (2004)Google Scholar
- 4.S.D. Ha, Y. Zhou, C.J. Fisher, S. Ramanathan, J.P. Treadway, J. Appl. Phys. 113, 184501 (2013)Google Scholar
- 5.F. Beteille, J. Livage, Sol–Gel Sci. Technol. 13, 915–921 (1998)Google Scholar
- 6.N. Mott, Metal-Insulator Transitions (Taylor and Francis Ltd., London, 1974), pp. 189–197Google Scholar
- 7.A. Talledo, C.G. Granqvist, J. Appl. Phys. 77, 4655 (1995)Google Scholar
- 8.Z. Wang, J. Chen, X. Hu, Thin Solid Films 375, 238–241 (2000)Google Scholar
- 9.A. Pan, J.-G. Zhang, Z. Nie, G. Cao, B.W. Arey, G. Li, S. Liang, J. Liu, J. Mater. Chem. 20, 9193–9199 (2010)Google Scholar
- 10.Y. Wang, K. Takahashi, H. Shang, G. Cao, J. Phys. Chem. B 109, 3085–3088 (2005)Google Scholar
- 11.M. Gotic, S. Popovic, M. Ivanda, S. Music, Mater. Lett. 57, 3186–3192 (2003)Google Scholar
- 12.N. Ozer, Thin Solid Films 305, 80–87 (1997)Google Scholar
- 13.D. Vasanth Raj, N. Ponpandian, D. Mangalaraj, C. Viswanathan, Mater. Sci. Semicond. Process. 16, 256–262 (2013)Google Scholar
- 14.M. Niederberger, M.H. Bartl, G.D. Stucky, J. Am. Chem. Soc. 124, 13642–13643 (2002)Google Scholar
- 15.S. Thiagarajan, M. Thaiyan, R. Ganesan, RSC Adv. 6, 82581 (2016)Google Scholar
- 16.C.W. Zou, X.D. Yan, D.A. Patterson, E.A.C. Emanuelsson, J.M. Bian, W. Gao, CrystEngComm 12, 691–693 (2010)Google Scholar
- 17.X. Huang, S. Zhang, H. Chen, Q. Zhong, J. Mol. Struct. 1098, 289–297 (2015)Google Scholar
- 18.B. Kaewruksa, R. Wanbayor, V. Ruangpornvisuti, J. Mol. Struct. 1012, 50 (2012)Google Scholar
- 19.M. Zeng, H. Yin, K. Yu, Chem. Eng. J. 188, 64 (2012)Google Scholar
- 20.C. Wu, F. Feng, Y. Xie, Chem. Soc. Rev. 42, 5157 (2013)Google Scholar
- 21.R.K. Sonker, B.C. Yadav, A. Sharma, M. Tomar, V. Gupta, RSC Adv. 6, 56149 (2016)Google Scholar
- 22.R.T. Rajendra Kumar, B. Karunagaran, S. Venkatachalam, D. Mangalaraj, S.K. Narayandass, R. Kesavamoorthy, Mater. Lett. 57, 3820–3825 (2003)Google Scholar
- 23.J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (2006)Google Scholar
- 24.D. Raoufi, A. Kiasatpour, H.R. Fallah, A.S.H. Rozatian, Appl. Surf. Sci. 253, 9085 (2007). https://doi.org/10.1016/j.apsusc.2007.05.032 Google Scholar
- 25.G.Y. Song, C. Oh, S. Sinha, J. Son, J. Heo, ACS Appl. Mater. Interfaces. 9, 23909 (2017). https://doi.org/10.1021/acsami.7b03398 Google Scholar
- 26.J.N. Gavgani, A. Hasani, M. Nouri, M. Mahyari, A. Salehi, Sens. Actuators B 229, 239 (2016). https://doi.org/10.1016/j.snb.2016.01.086 Google Scholar
- 27.D.G.K. Mani, J.B.B. Rayappan, Sens. Actuators B 183, 459 (2013). https://doi.org/10.1016/j.snb.2013.03.132 Google Scholar
- 28.D. Singh, V.S. Kundu, A.S. Maan, J. Mol. Struct. 1115, 250 (2016). https://doi.org/10.1016/j.molstruc.2016.02.091 Google Scholar
- 29.Y.-F. Sun, B. Li, F.-L. Meng, J.-Y. Liu, Z. Jin, L.-T. Kong, J.-H. Liu, Sensor 12, 2610–2631 (2012)Google Scholar
- 30.J.R. Reddy, G.K. Mani, P. Shankar, J.B.B. Rayappan, Sens. Lett. 12, 1451–1456 (2014)Google Scholar
- 31.S. Bai, T. Guo, Y. Zhao, R. Luo, D. Li, A. Chen, C.C. Liu, J. Mater. Chem. A 1, 11335–11342 (2013)Google Scholar
- 32.X. Dong, X. Cheng, X. Zhang, L. Sui, Y. Xu, S. Gao, H. Zhao, L. Huo, Sens. Actuators B 255, 1308–1315 (2018)Google Scholar
- 33.I. Rawal, RSC Adv. 5, 4135–4142 (2015)Google Scholar
- 34.P. Srinivasan, J.B.B. Rayappan, Sens. Actuators B 277, 129–143 (2018)Google Scholar
- 35.D.R. Patil, L.A. Patil, P.P. Patil, Sens. Actuators B 126, 368–374 (2007)Google Scholar
- 36.H. Khan, K. Malook, M. Shah, J. Mater. Sci. Mater. Electron. 28, 13873 (2017)Google Scholar
- 37.P.S. Venkatesh, P. Dharmaraj, V. Purushothaman, V. Ramakrishnan, K. Jeganathan, Sens. Actuators 212, 10–17 (2015)Google Scholar
- 38.T. Wang, Z. Sun, D. Huang, Z. Yang, Q. Ji, N. Hu, G. Yin, D. He, H. Wei, Y. Zhang, Sens. Actuators 252, 284–294 (2017)Google Scholar