Tuning of opto-electrical properties of hematite thin films using Co2+ doping

  • Hassan Yousaf
  • S. Mudassar Muzaffar
  • Saira RiazEmail author
  • Naveed Ahmad
  • Shamaila Shahzadi
  • Shahzad Naseem


Hematite thin films have attracted widespread interest in recent years because of their advanced electronic and optical properties. Optical and electronic properties of hematite thin films can be enhanced/tuned using doping or additive-based strategies. An application oriented sol–gel method is used for the synthesis of cobalt (Co) doped hematite sol with variation in Co concentration in the range of 0–10 wt%. Hematite phase is observed in undoped thin films annealed at 300 °C under 500 Oe magnetic field for 60 min. Strengthening of hematite phase is observed with increase in Co concentration up to a value of 8 wt%. Bond angle with +ive tilt (i.e. ~ 19.74°) was observed in refined structural parameters for thin films prepared with Co concentration in the range of 0–8 wt%. Higher Co concentration, i.e. 10 wt%, results in decrease in crystallinity of the films along with smaller +ive tilt in bond angle (i.e. ~ 8.82°). High transmission (~ 88%) is observed for thin film prepared using dopant concentration of 8 wt% in the visible and infrared regions. The energy band gap varies from 2.42 to 2.25 eV with variation in Co concentration from 0 to 10 wt%. Relatively smaller band gap values are correlated with defect induced states in the band gap. Spectroscopic ellipsometry is used for calculation of refractive index and high values are indication of high density of thin films. Relatively higher value of dielectric constant (~ 183, log f = 5.0) along with lower value of tangent loss is observed at Co concentration of 8 wt%. Higher grain boundary resistance (1.88 × 105 Ω) was observed at 8 wt% Co concentration. Variation in d.c. conductivity with dopant concentration is studied in detail using Jonscher’s power law. The value of frequency exponent (n) lies in the range of 0.88–0.98 (< 1) with variation in dopant concentration signifying that motion of charge carriers involves translational motion along with sudden hopping process. It is important to mention here that combined tuning of optical and electrical properties are observed in the present study with no change in phase pure hematite crystallographic structure.


  1. 1.
    J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018)CrossRefGoogle Scholar
  2. 2.
    M. Arruebo, M. Galán, N. Navascués, C. Téllez, C. Marquina, M.R. Ibarra, J. Santamaría, Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications. Chem. Mater. 18(7), 1911–1919 (2006)CrossRefGoogle Scholar
  3. 3.
    L. Pauling, S.B. Hendricks, The crystal structures of hematite and corundum. J. Am. Chem. Soc. 47, 781–790 (1925)CrossRefGoogle Scholar
  4. 4.
    A. Akbar, S. Riaz, R. Ashraf, S. Naseem, Magnetic and magnetization properties of co-doped Fe2O3 thin films. IEEE Trans. Magn. 50, 2201204 (2014)Google Scholar
  5. 5.
    S. Riaz, A. Akbar, S. Naseem, Ferromagnetic effects in Cr-doped Fe2O3 thin films. IEEE Trans. Magn. 50, 2200704 (2014)Google Scholar
  6. 6.
    H. Katsuki, S. Komarneni, Microwave-hydrothermal synthesis of monodispersed nanophase α-Fe2O3. J. Am. Ceram. Soc. 84, 2313–2317 (2001)CrossRefGoogle Scholar
  7. 7.
    L. Gonzalez-Moragas, S.-M. Yu, N. Murillo-Cremaes, A. Laromaine, A. Roig, Scale-up synthesis of iron oxide nanoparticles by microwave-assisted thermal decomposition. Chem. Eng. J. 281, 87–95 (2015)CrossRefGoogle Scholar
  8. 8.
    S. Gupta, Cavity nonlinear optics at low photon numbers from collective atomic motion. Phys. Rev. Lett. 99, 213601 (2007)CrossRefGoogle Scholar
  9. 9.
    S. Riaz, A. Akbar, S. Naseem, Structural, electrical and magnetic properties of iron oxide thin films. Adv. Sci. Lett. 9, 828–833 (2013)CrossRefGoogle Scholar
  10. 10.
    S. Krehula, M. Ristic, M. Reissner, S. Kubuki, S. Music, Synthesis and properties of indium-doped hematite. J. Alloys Compd. 695, 1900–1907 (2017)CrossRefGoogle Scholar
  11. 11.
    M.-C. Huang, W.-S. Chang, J.-C. Lin, Y.-H. Chang, C.-C. Wu, Magnetron sputtering process of carbon-doped a-Fe2O3 thin films for photoelectrochemical water splitting. J. Alloys Compd. 636, 176–182 (2015)CrossRefGoogle Scholar
  12. 12.
    C.-L. Chen, C.-L. Dong, K. Asokan, G. Chern, C.L. Chang, Electronic structure of Cr doped Fe3O4 thin films by X-ray absorption near-edge structure spectroscopy. Solid State Commun. 272, 48–52 (2018)CrossRefGoogle Scholar
  13. 13.
    B. Eftekharinia, A. Moshaii, A. Dabirian, N.S. Vayghan, Optimization of charge transport in a Co–Pi modified hematite thin film produced by scalable electron beam evaporation for photoelectrochemical water oxidation. J. Mater. Chem. A 5, 3412–3424 (2017)CrossRefGoogle Scholar
  14. 14.
    D. Bersani, P.P. Lottici, A. Montenero, Micro-Raman investigation of iron oxide films and powders produced by sol–gel syntheses. J. Raman Spectrosc. 30(5), 355–360 (1999)CrossRefGoogle Scholar
  15. 15.
    H. Choi, Y. Hong, H. Ryu, W.-J. Lee, Photoelectrochemical properties of hematite thin films grown via a two-step electrochemical deposition method. Ceram. Int. 44, 4105–4113 (2018)CrossRefGoogle Scholar
  16. 16.
    B. Wickman, A.B. Fanta, A. Burrows, A. Hellman, J.B. Wagner, B. Iandolo, Iron oxide films prepared by rapid thermal processing for solar energy conversion. Sci. Rep. 7, 40500 (2017)CrossRefGoogle Scholar
  17. 17.
    J.A. Glasscock, P.R.F. Barnes, I.C. Plumb, A. Bendavid, P.J. Martin, Structural, optical and electrical properties of undoped polycrystalline hematite thin films produced using filtered arc deposition. Thin Solid Films 516, 1716–1724 (2008)CrossRefGoogle Scholar
  18. 18.
    A. Serrano, J. Rubio-Zuazo, J. López-Sánchez, I. Arnay, E. Salas-Colera, G.R. Castro, Stabilization of epitaxial α-Fe2O3 thin films grown by pulsed laser deposition on oxide substrates. J. Phys. Chem. C 122(28), 16042–16047 (2018)CrossRefGoogle Scholar
  19. 19.
    Y.-C. Chen, C.-L. Kuob, Y.-K. Hsu, Facile preparation of Zn-doped hematite thin film as photocathode for solar hydrogen generation. J. Alloys Compd. 768, 810–816 (2018)CrossRefGoogle Scholar
  20. 20.
    K. Maabong, A.G.J. Machatine, B.S. Mwankemwa, A. Braun, D.K. Bora, R. Toth, M. Dial, Nanostructured hematite thin films for photoelectrochemical water splitting. Physica B 535, 67–71 (2018)CrossRefGoogle Scholar
  21. 21.
    T. Käämbre, M. Vanags, R. Pärna, V. Kisand, R. Ignatans, J. Kleperis, A. Šutkaad, Yttrium-doped hematite photoanodes for solar water splitting: Photoelectrochemical and electronic properties. Ceram. Int. 44, 13218–13225 (2018)CrossRefGoogle Scholar
  22. 22.
    B.D. Cullity, Elements of X-ray Diffraction, (Addison-Wesley, Boston, 1956)Google Scholar
  23. 23.
    K. Hang Ng, L.J. Minggua, W.F. Mark-Lee, K. Arifina, M.H.H. Jumaliac, M.B. Kassima, A new method for the fabrication of a bilayer WO3/Fe2O3 photoelectrode for enhanced photoelectrochemical performance. Mater. Res. Bull. 98, 47–52 (2018)CrossRefGoogle Scholar
  24. 24.
    A. Awan, M. Nadeem, S. Riaz, S. Sajjad Hussain, F. Majid, S. Naseem, Molarity dependent oscillatory structural and magnetic behavior of phase pure BiFeO3 thin films: sol–gel approach. Ceram. Int. (2018). Google Scholar
  25. 25.
    I.S. Lyubutin, T.V. Dmitrieva, A.S. Stepin, Dependence of exchange interactions on chemical bond angle in a structural series:cubic perovskite–rhombic orthoferrite–rhombohedral hematite. J. Exp. Theor. Phys. 115, 1070–1084 (1999)Google Scholar
  26. 26.
    J.C. Richley, Fundamental studies of diamond chemical vapour deposition: plasma diagnostics and computer modeling, thesis, Doctor of philosophy, School of ChemistryGoogle Scholar
  27. 27.
    M. Yamasaki, W. Li, D.J.D. Johnson, J.A. Huntington, Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature (2008). Google Scholar
  28. 28.
    E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications (Wiley, New Jersey, 2005)CrossRefGoogle Scholar
  29. 29.
    N. Kumari, V. Kumarn, S.K. Singh, Synthesis, structural and dielectric properties of Cr3+ substituted Fe3O4 nanoparticles. Ceram. Int. 40, 12199–12205 (2014)CrossRefGoogle Scholar
  30. 30.
    V.A. Hiremath, A. Venkatarman, Dielectric, electrical and infrared studies of γ-Fe2O3 prepared by combustion method. Bull. Mater. Sci. 26, 391–396 (2003)CrossRefGoogle Scholar
  31. 31.
    S. Nasir, G. Asghar, M.A. Malik, M. Anis-ur-Rehman, Structural, dielectric and electrical properties of zinc doped nickel nanoferrites prepared by simplified sol–gel method. J. Sol-Gel Sci. Technol. 59, 111–116 (2011)CrossRefGoogle Scholar
  32. 32.
    F.Z. Qian, J.S. Jiang, D.M. Jiang, W.G. Zhang, J.H. Liu, Multiferroic properties of Bi0.8Dy0.2–xLaxFeO3 nanoparticles. J. Phys. D: Appl. Phys. 43, 025403 (2010)CrossRefGoogle Scholar
  33. 33.
    B. Jansi Rani, G. Ravi, R. Yuvakkumar a, S. Ravichandran, S. Fuad Ameen, AlNadhary, Sn doped a-Fe2O3 (Sn = 0, 10, 20, 30 wt%) photoanodes for photoelectrochemical water splitting applications. Renew. Energy 133, 566–574 (2019)CrossRefGoogle Scholar
  34. 34.
    J.A. Cuenca, K. Bugler, S. Taylor, D. Morgan, P. Williams, J. Bauer, A. Porch, Study of the magnetite to maghemite transition using microwave permittivity and permeability measurements. J. Phys.: Condens. Matter. 28, 106002 (2016)Google Scholar
  35. 35.
    V.D. Nithya, R.K. Selvan, “Synthesis, electrical and dielectric properties of FeVO4 nanoparticles. Physica B 406, 24–29 (2011)CrossRefGoogle Scholar
  36. 36.
    A.K. Jonscher, The role of contacts in frequency-dependent conduction in disordered solids. J. Phys. C: Solid State Phys. 6, L235 (1973)CrossRefGoogle Scholar
  37. 37.
    H.M. Zaki, Temperature dependence of dielectric properties for copper doped magnetite. J. Alloys Compd. 439, 1–8 (2007)CrossRefGoogle Scholar
  38. 38.
    R. Gherbi, Y. Bessekhouad, M. Trari, Optical and transport properties of Sn-doped ZnMn2O4 prepared by sol–gel method. J. Phys. Chem. Solids 89, 69–77 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Riaz, S. Naseem, Controlled nanostructuring of TiO2 nanoparticles: a sol–gel approach. J. Sol-Gel Sci. Technol. 74, 299–309 (2015)CrossRefGoogle Scholar
  40. 40.
    S.H. Tamboli, Comparative study of physical properties of vapor chopped and nonchopped Al2O3 thin films. Mater. Res. Bull. 46, 815–819 (2011)CrossRefGoogle Scholar
  41. 41.
    Y.-T. Chen, Effect of grain size on optical and electrical properties of Ni80Fe20 thin films. J. Magn. Magn. Mater. 360, 87–91 (2014)CrossRefGoogle Scholar
  42. 42.
    S.Bushra Bukhari, M. Imran, M. Bashir, S. Riaz, S. Naseem, Room temperature stabilized TiO2 doped ZrO2 thin films for teeth coatings—a sol-gel approach. J. Alloys Compd.
  43. 43.
    I.E. Zaldívar Huerta, D.F. Pérez Montaña, P.H. Nava, A.G. Juárez, J.R. Asomoza, A.L. Leal Cruz, Transmission system for distribution of video over long-haul optical point-to-point links using a microwave photonic filter in the frequency range of 0.01–10 GHz. Opt. Fiber Technol. 19, 665–670 (2013)CrossRefGoogle Scholar
  44. 44.
    F. Bouhjar, M. Mollar, M.L. Chourou, B. Marí, B. Bessaïs, Hydrothermal synthesis of nanostructured Cr-doped hematite with enhanced photoelectrochemical activity. Electrochim. Acta 260, 838–846 (2018)CrossRefGoogle Scholar
  45. 45.
    S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Studies on morphological and electrical properties of Al incorporated combusted iron oxide. J. Alloys Compd. 509, 3943–3951 (2011)CrossRefGoogle Scholar
  46. 46.
    S. Ilican, M. Caglar, Y. Caglar, The effect of deposition parameters on the physical properties of CdxZn1–xS films deposited by spray pyrolysis method. J. Optoelectron. Adv. Mater. 9(2), 1414–1417 (2007)Google Scholar
  47. 47.
    A.A. Bahishti, M. Husain, M. Zulfequar, Effects of laser irradiation on optical properties of a-Se100–x Tex thin films. Radiat. Eff. Defects Solids 166, 529–536 (2011)CrossRefGoogle Scholar
  48. 48.
    A.K. Wolaton, T.S. Moss, Determination of refractive index and correction to effective electron mass in PbTe and PbSe. Proc. R. Soc. 81, 5091 (1963)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hassan Yousaf
    • 1
  • S. Mudassar Muzaffar
    • 1
  • Saira Riaz
    • 1
    Email author
  • Naveed Ahmad
    • 2
  • Shamaila Shahzadi
    • 3
  • Shahzad Naseem
    • 1
  1. 1.Centre of Excellence in Solid State PhysicsUniversity of the PunjabLahorePakistan
  2. 2.Department of PhysicsUniversity of Education, Township CampusLahorePakistan
  3. 3.Department of PhysicsUniversity of Engineering and TechnologyLahorePakistan

Personalised recommendations