Advertisement

Synthesis and photoluminescence properties of high-efficiency BaGd2Si3O10:Eu3+ red phosphors for WLEDs and display device applications

  • R. Vijayakumar
  • Xiaoyong HuangEmail author
Article
  • 28 Downloads

Abstract

The present paper reported the spectroscopic behavior and thermal stability of Eu3+ activated BaGd2Si3O10 phosphors synthesized by high temperature solid state reaction. The X-ray diffraction (XRD) patterns revealed that as-prepared BaGd2Si3O10:xEu3+ phosphors consisted of single phase monoclinic structure. Under the excitation of 395 nm, Eu3+ ions showed five emission peaks around 578, 589, 613, 654 and 702 nm corresponding to the 5D0 → 7F0, 5D0 → 7F1, 5D0 → 7F2, 5D0 → 7F3 and 5D0 → 7F4 transitions, respectively. The θ value was calculated to be 6.68, which indicated that concentration quenching occurred due to dipole–dipole interactions. The critical distance (Rc) between activator ions was found to be 11.2 Å. Decay curve measurements were made to find excited state lifetime of Eu3+ ions. The dominant emission color of as-prepared phosphors was obtained by using CIE 1931 color chromaticity diagram. Further, thermal stability and activation energy for thermal quenching were also estimated for the optimal concentration phosphor to claim its applicability for near-UV based WLEDs.

Notes

Funding

This study was funded by National Natural Science Foundation of China (No. 51502190).

References

  1. 1.
    Z. Xia, Q. Liu, Prog. Mater Sci. 84, 59 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Zhao, H. Liao, L. Ning, Q. Zhang, Q. Liu, Z. Xia, Adv. Mater. 30, 1802489 (2018)CrossRefGoogle Scholar
  3. 3.
    J. Qiao, L. Ning, M.S. Molokeev, Y.-C. Chuang, Q. Liu, Z. Xia, J. Am. Chem. Soc. 140, 9730 (2018)CrossRefGoogle Scholar
  4. 4.
    J. Qiao, Z. Xia, Z. Zhang, B. Hu, Q. Liu, Sci. China Mater. 61, 985 (2018)CrossRefGoogle Scholar
  5. 5.
    Y. Shi, Z. Wang, Q. Ning, D. Wu, B. Quan, J. Mater. Sci. 29, 15894 (2018)Google Scholar
  6. 6.
    Y. Chen, X. Yang, B. Wang, L. Dai, Q. Chen, Y. Wang, J. Mater. Sci.: Mater. Electron. (2018).  https://doi.org/10.1007/s10854-018-0392-3 Google Scholar
  7. 7.
    D. Game, C. Palan, N. Ingale, S. Omanwar, J. Mater. Sci. 28, 8777 (2017)Google Scholar
  8. 8.
    S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 64, 1687 (1994)CrossRefGoogle Scholar
  9. 9.
    G.F.S. Nakamura, J. Phys. Soc. Jpn. 54, 53 (1999)Google Scholar
  10. 10.
    A.A. Setlur, W.J. Heward, Y. Gao, A.M. Srivastava, R.G. Chandran, M.V. Shankar, Chem. Mater. 18, 3314 (2006)CrossRefGoogle Scholar
  11. 11.
    X. Huang, Nat. Photonics 8, 748 (2014)CrossRefGoogle Scholar
  12. 12.
    H. Guo, B. Devakumar, B. Li, X. Huang, Dyes Pigm. 151, 81 (2018)CrossRefGoogle Scholar
  13. 13.
    X. Huang, H. Guo, B. Li, J. Alloys Compd. 720, 29 (2017)CrossRefGoogle Scholar
  14. 14.
    X. Huang, B. Li, H. Guo, D. Chen, Dyes Pigm. 143, 86 (2017)CrossRefGoogle Scholar
  15. 15.
    B. Li, X. Huang, H. Guo, Y. Zeng, Dyes Pigm. 150, 67 (2018)CrossRefGoogle Scholar
  16. 16.
    H. Guo, X. Huang, Y. Zeng, J. Alloys Compd. 741, 300 (2018)CrossRefGoogle Scholar
  17. 17.
    M. Zhao, Z. Zhao, L. Yang, X. Wang, F. Yan, C. Xing, J. Mater. Sci. 28, 16008 (2017)Google Scholar
  18. 18.
    K. Li, H. Lian, M. Shang, J. Lin, Dalton Trans. 44, 20542 (2015)CrossRefGoogle Scholar
  19. 19.
    H. Guo, X. Huang, J. Alloys Compd. 764, 809 (2018)CrossRefGoogle Scholar
  20. 20.
    P. Du, X. Huang, J.S. Yu, Chem. Eng. J. 337, 91 (2018)CrossRefGoogle Scholar
  21. 21.
    Y. Yao, Z. Zhou, J. Lumin. 179, 408 (2016)CrossRefGoogle Scholar
  22. 22.
    K. Mondal, P. Kumari, J. Manam, Curr. Appl. Phys. 16, 707 (2016)CrossRefGoogle Scholar
  23. 23.
    Y. Parganiha, J. Kaur, V. Dubey, D. Chandrakar, Superlattices Microstruct. 77, 152 (2015)CrossRefGoogle Scholar
  24. 24.
    G. Li, Y. Wang, New J. Chem. 41, 9178 (2017)CrossRefGoogle Scholar
  25. 25.
    J.Y. Park, S.J. Park, H.K. Yang, Optik, 166, 69 (2018)Google Scholar
  26. 26.
    K. Mondal, D.K. Singh, J. Manam, J. Alloys Compd. 761, 41 (2018)CrossRefGoogle Scholar
  27. 27.
    Y. Liu, Z. Wang, J. Zhong, F. Pan, H. Liang, Z. Xiao, Mater. Lett. 129, 130 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Chen, Q. Liu, X. Du, B. Zhang, W.Y.Y. Wang, C. Lu, A. Shen, H. Zhang, B. Sun, J. Mater. Sci. 52, 1156 (2017)CrossRefGoogle Scholar
  29. 29.
    G.M. Rao, S.K. Hussain, G.S.R. Raju, P.S. Rao, J.S. Yu, J. Alloys Compd. 660, 437 (2016)CrossRefGoogle Scholar
  30. 30.
    X. Zhang, Y. Chen, S. Zeng, L. Zhou, J. Shi, M. Gong, Ceram. Int. 40, 14537 (2014)CrossRefGoogle Scholar
  31. 31.
    G. Blasse, Philips Res. Rep. 24, 131 (1969)Google Scholar
  32. 32.
    G. Blasse, J. Solid State Chem. 62, 207 (1986)CrossRefGoogle Scholar
  33. 33.
    D.L. Dexter, J. Chem. Phys. 21, 836 (1953)CrossRefGoogle Scholar
  34. 34.
    D. Dexter, J.H. Schulman, J. Chem. Phys. 22, 1063 (1954)CrossRefGoogle Scholar
  35. 35.
    Y. Song, Q. Liu, X. Zhang, X. Fang, T. Cui, Mater. Res. Bull. 48, 3687 (2013)CrossRefGoogle Scholar
  36. 36.
    J. Liang, P. Du, H. Guo, L. Sun, B. Li, X. Huang, Dyes Pigm. 157, 40 (2018)CrossRefGoogle Scholar
  37. 37.
    Y. Zhang, W. Gong, G. Ning, New J. Chem. 40, 10136 (2016)CrossRefGoogle Scholar
  38. 38.
    H. Guo, L. Sun, J. Liang, B. Li, X. Huang, J. Lumin. 205, 115 (2019)CrossRefGoogle Scholar
  39. 39.
    D. Stefańska, M. Stefański, P. Dereń, Opt. Mater. 37, 410 (2014)CrossRefGoogle Scholar
  40. 40.
    Z.-B. Tang, C.-L. Xu, X.-R. Wei, X.-G. Zhang, Y.-B. Chen, J. Alloys Compd. 695, 2745 (2017)CrossRefGoogle Scholar
  41. 41.
    D. Rudnicka, P. Dereń, Opt. Mater. 35, 2531 (2013)CrossRefGoogle Scholar
  42. 42.
    R. Yu, H.M. Noh, B.K. Moon, B.C. Choi, J.H. Jeong, K. Jang, S.S. Yi, J.K. Jang, J. Alloys Compd. 576, 236 (2013)CrossRefGoogle Scholar
  43. 43.
    L. Sun, H. Guo, J. Liang, B. Li, X. Huang, J. Lumin. 202, 403 (2018)CrossRefGoogle Scholar
  44. 44.
    G. Dong, J. Zhao, M. Li, L. Guan, X. Li, Ceram. Int. 45, 2653 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and OptoelectronicsTaiyuan University of TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations