Advertisement

Green synthesis of capacitive carbon derived from Platanus catkins with high energy density

  • Mengqi Wang
  • Jie ZhouEmail author
  • Shengji Wu
  • Hui Wang
  • Wei Yang
Article
  • 12 Downloads

Abstract

Heteroatom-doped hierarchical porous carbon was prepared from platanus catkins using a facile binary carbonate co-pyrolysis strategy combined with hydrothermal pretreatment. The as-obtained HPC-Na2CO3/K2CO3 possesses an appropriate specific surface area of 345 m2 g−1 and an inherited tubular structure composed of interconnected micro- and mesopores (0.6-5 nm), together with a rich heteroatom doping of O and N. HPC-Na2CO3/K2CO3 exhibits superior specific capacitance of 301.8 F g−1 at 0.5 A g−1, a desirable rate retention of 78.2% from 0.5 to 10 A g−1, and good cycling stability with 99.2% of initial capacitance retention after 5000 cycles at 5 A g−1 in 6 M KOH aqueous electrolytes. A symmetrical HPC-Na2CO3/K2CO3 capacitor can deliver an excellent energy density of 33.4 Wh kg−1 at the power density of 0.2 kW kg−1. Compared with the classical KOH and ZnCl2 activation process, this technique, using Na2CO3/K2CO3 etching to prepare catkin-derived porous carbon, has the advantages of simplicity, more balanced micro/mesopore ratio, recyclability, and no pollutants.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Project No. 21406044), the Zhejiang Province Public Welfare Technology Application Research Project (Grant No. LGF19B060007), and Natural Science Foundation of Zhejiang Province (Grant No. LQ17B060006).

References

  1. 1.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  2. 2.
    M. Kumar, A. Subramania, K. Balakrishnan, Electrochim. Acta 149, 152–158 (2014)CrossRefGoogle Scholar
  3. 3.
    B.K.S. Angaiah, V. Murugadoss, A. Subasri, Chem. Eng. J. 355, 881–890 (2018)Google Scholar
  4. 4.
    B. Kirubasankar, V. Murugadoss, J. Lin et al., Nanoscale 10, 20414–20425 (2018)CrossRefGoogle Scholar
  5. 5.
    L. Wu, L. Hao, B. Pang, G. Wang, Y. Zhang, X. Li, J. Mater. Chem. A 5, 4629–4637 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Hou, C. Cao, F. Idrees, X. Ma, ACS Nano 9, 2556–2564 (2015)CrossRefGoogle Scholar
  7. 7.
    H.J. Liu, X.M. Wang, W.J. Cui, Y.Q. Dou, D.Y. Zhao, Y.Y. Xia, J. Mater. Chem. 20, 4223–4230 (2010)CrossRefGoogle Scholar
  8. 8.
    W. Liu, K. Feng, Y. Zhang et al., Nano Energy 34, 491–499 (2017)CrossRefGoogle Scholar
  9. 9.
    W. Lee, J.H. Moon, ACS Appl Mater Interfaces 6, 13968–13976 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Han, L.L. Zhang, S. Lee et al., ACS Nano 7, 19–26 (2013)CrossRefGoogle Scholar
  11. 11.
    G. Milczarek, A. Ciszewski, I. Stepniak, J. Power Sources 196, 7882–7885 (2011)CrossRefGoogle Scholar
  12. 12.
    X. Yu, Y. Kang, H.S. Park, Carbon 101, 49–56 (2016)CrossRefGoogle Scholar
  13. 13.
    H. Guo, Q. Gao, J. Power Sources 186, 551–556 (2009)CrossRefGoogle Scholar
  14. 14.
    D. Qin, Z. Liu, Y. Zhao, G. Xu, F. Zhang, X. Zhang, Carbon 130, 664–671 (2018)CrossRefGoogle Scholar
  15. 15.
    M. Yang, B. Cheng, H. Song, X. Chen, Electrochim. Acta 55, 7021–7027 (2010)CrossRefGoogle Scholar
  16. 16.
    Y. Li, G. Wang, T. Wei, Z. Fan, P. Yan, Nano Energy 19, 165–175 (2016)CrossRefGoogle Scholar
  17. 17.
    W. Kai, Z. Ning, S. Lei et al., Electrochim. Acta 166, 1–11 (2015)CrossRefGoogle Scholar
  18. 18.
    X.L. Su, M.Y. Cheng, L. Fu, J.H. Yang, X.C. Zheng, X.X. Guan, J. Power Sources 362, 27–38 (2017)CrossRefGoogle Scholar
  19. 19.
    K. Wang, Y. Song, R. Yan, et al, Appl. Surf. Sci. 394, 569–577 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Kaustubha Mohanty, B.C.M. Jha, M.N. And, Biswas, Ind. Eng. Chem. Res. 44, 4128–4138 (2005)CrossRefGoogle Scholar
  21. 21.
    X. Xiang, E. Liu, L. Li et al., J. Solid State Electrochem. 15, 579–585 (2011)CrossRefGoogle Scholar
  22. 22.
    L. Deng, G. Zhu, J. Wang et al., J. Power Sources 196, 10782–10787 (2011)CrossRefGoogle Scholar
  23. 23.
    L. Wang, M. Inagaki, M. Toyoda, Carbon 48, 1323–1323 (2010)CrossRefGoogle Scholar
  24. 24.
    V. Jiménez, P. Sánchez, J.L. Valverde, A. Romero, J. Colloid Interface Sci. 336, 712–722 (2009)CrossRefGoogle Scholar
  25. 25.
    J.J. Niu, J.N. Wang, Solid State Sci. 10, 1189–1193 (2008)CrossRefGoogle Scholar
  26. 26.
    P. Ehrburger, N. Pusset, P. Dziedzinl, Carbon 30, 1105–1109 (1992)CrossRefGoogle Scholar
  27. 27.
    J. Chen, Z. Mao, L. Zhang et al., Carbon 130, 41–47 (2018)CrossRefGoogle Scholar
  28. 28.
    Z. Xu, Y. Liu, H. Chen, M. Yang, H. Li, J. Mater. Sci. 52, 7781–7793 (2017)CrossRefGoogle Scholar
  29. 29.
    T. Lin, I.W. Chen, F. Liu et al., Science 350, 1508–1513 (2015)CrossRefGoogle Scholar
  30. 30.
    Y. Li, K. Ye, K. Cheng et al., J. Electroanal. Chem. 727, 154–162 (2014)CrossRefGoogle Scholar
  31. 31.
    X. He, R. Li, J. Qiu et al., Carbon 50, 4911–4921 (2012)CrossRefGoogle Scholar
  32. 32.
    K. Wang, R. Yan, N. Zhao et al., Mater. Lett. 174, 249–252 (2016)CrossRefGoogle Scholar
  33. 33.
    G. Zhang, H. Chen, W. Liu, D. Wang, Y. Wang, Mater. Lett. 185, 359–362 (2016)CrossRefGoogle Scholar
  34. 34.
    S. Wang, Z. Ren, J. Li, Y. Ren, L. Zhao, J. Yu, RSC Adv. 4, 31300–31307 (2014)CrossRefGoogle Scholar
  35. 35.
    X. Du, W. Zhao, S. Ma et al., Ionics 22, 1–9 (2016)CrossRefGoogle Scholar
  36. 36.
    J. Zhou, L. Bao, S. Wu, W. Yang, H. Wang, J. Mater. Sci. 29, 12340–12350 (2018)Google Scholar
  37. 37.
    J. Qu, C. Geng, S. Lv, G. Shao, S. Ma, M. Wu, Electrochim. Acta 176, 982–988 (2015)CrossRefGoogle Scholar
  38. 38.
    W. Zhang, Z.H. Huang, Z. Guo, C. Li, F. Kang, Mater. Lett. 64, 1868–1870 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouPeople’s Republic of China

Personalised recommendations