Advertisement

Combined effect of modified titanium carbide (TiC) particles and ethylene alpha olefins (POE) on properties of ethylene propylene diene monomer (EPDM)/TiC/POE composites for electronic application

  • Jun SuEmail author
  • Caihong Li
Article
  • 12 Downloads

Abstract

For the field of flexible electronic materials, titanium carbide (TiC) is still a new member that needs to be further investigated. In this study, the effects of surface modification, TiC content and ethylene alpha olefins (POE) amount on dielectric properties of ethylene propylene diene copolymer (EPDM) are investigated in detail. The addition of 20% modified TiC particles can improve the dielectric constant of EPDM control from 2.4 to 8.7 (360% increase) at 105 Hz. However, the complex viscosity of EPDM control increases by 6.4 times at 1.7 Hz and the volume resistivity decreases by 3 order of magnitude. Moreover, the thermal conductivity of EPDM control only increase by 17%. By comparison, the 20% POE not only increases the dielectric constant of EPDM/TiC (10/2) from 8.7 to 13.5 (55% increase) at 105 Hz, with slight decrease of volume resistivity, but also decreases the complex viscosity of EPDM/TiC (10/2) from 1.19 × 105 Pa·S to 5.78 × 104 Pa·S (51% decrease) at 1.7 Hz. Meanwhile, the addition of 20% POE can further enhance the thermal conductivity of EPDM/TiC (10/2) from 0.281 W/(m·K) to 0.416 W/(m·K) (48% increase).

Notes

Acknowledgements

The work is supported by Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-aged Teachers and Presidents;The Jiangsu precision manufacturing engineering technology research and Development Center, Nanjing Institution of Industry Technology (ZK15-01-06); Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP), PPZY2015A087.

References

  1. 1.
    J. Su, J. Zhang, J. Polym. Sci. B 56, 1101 (2018)CrossRefGoogle Scholar
  2. 2.
    V.R. Kolbunov, A.S. Tonkoshkur, I.V. Gomilko, J. Mater. Sci. - Mater. Electron. 28, 8322 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Molberg, D. Crespy, P. Rupper et al., Adv. Funct. Mater. 20, 3280 (2010)CrossRefGoogle Scholar
  4. 4.
    Z. Wang, W. Zhou, X. Sui et al., J. Reinf. Plast. Compos. 34, 1126 (2015)CrossRefGoogle Scholar
  5. 5.
    J. Huang, S. Shian, Z. Suo et al., Adv. Funct. Mater. 23, 5056 (2013)CrossRefGoogle Scholar
  6. 6.
    J. Su, J. Zhang, Compos. Part B 112, 148 (2017)CrossRefGoogle Scholar
  7. 7.
    F.B. Madsen, S.B. Zakaria, L. Yu et al., Adv. Eng. Mater. 18, 1154 (2016)CrossRefGoogle Scholar
  8. 8.
    J. Su, J. Zhang, Plast., Rubb. Compos. 45, 127 (2016)CrossRefGoogle Scholar
  9. 9.
    T. Lin, S. Li, J. Ke et al., Adv. Eng. Mater. 20, 1800051 (2018)CrossRefGoogle Scholar
  10. 10.
    J. Su, J. Zhang, J. Mater. Sci. - Mater. Electron. 27, 4344 (2016)CrossRefGoogle Scholar
  11. 11.
    J. Su, J. Zhang, J. Mater. Sci. - Mater. Electron. 28, 5250 (2017)CrossRefGoogle Scholar
  12. 12.
    J. Kruželák, R. Sýkora, R. Dosoudil et al., Adv. Mater. Sci. Eng. 2016, 1 (2016)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, S. Zhou, H. Du, J. Mater. Sci. - Mater. Electron. 29, 12360 (2018)CrossRefGoogle Scholar
  14. 14.
    M. Khan, S.; Khattak, N.S.; Sohail, Muhammad, J. Mater. Sci. - Mater. Electron. 28, 1997 (2017)CrossRefGoogle Scholar
  15. 15.
    A.L. Skov, L. Yu, Adv. Eng. Mater. 20, 1700762 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Li, C. Tang, L. Zhang, J. Mater. Sci. - Mater. Electron. 29, 4948 (2018)CrossRefGoogle Scholar
  17. 17.
    J. Su, J. Zhang, Appl. Surf. Sci. 388, 531 (2016)CrossRefGoogle Scholar
  18. 18.
    O.O. Okudur, K. Vanstreels, I. de Wolf, Adv. Eng. Mater. 19, 1600653 (2017)CrossRefGoogle Scholar
  19. 19.
    K.H. Rahiman, G. Unnikrishnan, A. Sujith et al., Mater. Lett. 59, 633 (2005)CrossRefGoogle Scholar
  20. 20.
    S. Pongdhorn, S.B. Chakrit, K. Hatthapanit et al., Polym. Test. 24, 439 (2005)CrossRefGoogle Scholar
  21. 21.
    P. Sae-oui, C. Sirisinha, U. Thepsuwan et al., Polym. Test. 23, 871 (2004)CrossRefGoogle Scholar
  22. 22.
    J. Su, J. Zhang, J. Appl. Polym. Sci. 134, 44831 (2017)Google Scholar
  23. 23.
    H. Silau, N.B. Stabell, F.R. Petersen et al., Adv. Eng. Mater. 20, 1800241 (2018)CrossRefGoogle Scholar
  24. 24.
    J. Su, J. Zhang, RSC Adv. 5, 78448 (2015)CrossRefGoogle Scholar
  25. 25.
    B. Kussmaul, S. Risse, G. Kofod et al., Adv. Funct. Mater. 21, 4589 (2011)CrossRefGoogle Scholar
  26. 26.
    S. Yu, G. Wang, J. Polym. Sci. B 55, 948 (2017)CrossRefGoogle Scholar
  27. 27.
    C. Nakason, P. Wannavilai, A. Kaesaman, Polym. Test. 25, 34 (2006)CrossRefGoogle Scholar
  28. 28.
    J. Su, S. Chen, J. Zhang, Polym. Test. 30, 195 (2010)CrossRefGoogle Scholar
  29. 29.
    J. Su, S. Chen, J. Zhang et al., Polym. Test. 28, 235 (2009)CrossRefGoogle Scholar
  30. 30.
    A. Rathi, M. Hernández, S.J. Garcia et al., J. Polym. Sci. B 56, 842 (2018)CrossRefGoogle Scholar
  31. 31.
    P.H. Vargantwar, A.E. Özçam, T.K. Ghosh et al., Adv. Funct. Mater. 22, 2100 (2012)CrossRefGoogle Scholar
  32. 32.
    D.M. Opris, M. Molberg, C. Walder et al., Adv. Funct. Mater. 21, 3531 (2011)CrossRefGoogle Scholar
  33. 33.
    M.-F. Lin, V.K. Thakur, E.J. Tanb et al., RSC Adv. 1, 576 (2011)CrossRefGoogle Scholar
  34. 34.
    J. Chen, X. Yu, F. Yang, J. Mater. Sci. - Mater. Electron. 28, 8043 (2017)CrossRefGoogle Scholar
  35. 35.
    X.-L. Hu, W.-B. Luo, X. Liu et al., Plast. Rubb. Compos. 42, 416 (2013)CrossRefGoogle Scholar
  36. 36.
    I. Kang, M.A. Khaleque, Y. Yoo et al., Compos. A 42, 623 (2011)CrossRefGoogle Scholar
  37. 37.
    S.V. Ganesan, K.K. Mothilal, S. Selvasekarapandian, J. Mater. Sci. - Mater. Electron. 29, 8089 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Mechanics EngineeringNanjing Institute of Industry TechnologyNanjingPeople’s Republic of China
  2. 2.Danish Polymer Centre, Department of Chemical and Biochemical EngineeringTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations