Synthesis and electrochemical performance of nickel–cobalt oxide/carbon nanocomposites for use in efficient oxygen evolution reaction

  • Ke Wang
  • Changhai LiuEmail author
  • Wenchang Wang
  • Naotoshi Mitsuzaki
  • Zhidong ChenEmail author


Developing active, stable and low-cost electrocatalysts for oxygen evolution reaction (OER) has drawn much attention. Herein, we found a convenient, simple method to prepare porous Ni-Co oxide/carbon nanoparticles via a simple heat treatment of Ni(NO3)2⋅6H2O, Co(NO3)2⋅6H2O and Tween-85, a polysorbate surfactant with a boiling point above 100 °C. And the obtained porous Ni–Co oxide/carbon nanocomposites possess high activity and good durability for the OER in alkaline solution. The catalyst exhibits good stability for a current density of 10 mA cm−2 for 2 h and low Tafel slope of 54 mV per decade for OER. The following electrochemical and physical characterizations demonstrate that the high OER activity of the hybrid catalysts arises from the synergistic effect between Ni–Co bimetallic oxide and carbon.



The authors greatly acknowledge financial support from the National Natural Science Foundation of China (Nos. 51702025, 51574047), Natural Science Foundation of Jiangsu Province (No. BK20160277).

Supplementary material

10854_2019_706_MOESM1_ESM.doc (36 kb)
Supplementary material 1 (DOC 36 KB)


  1. 1.
    Z. Yao, M. Zhang, H. Wu, L. Yang, R. Li, P. Wang, J. Am. Chem. Soc. 137, 3799–3802 (2015)CrossRefGoogle Scholar
  2. 2.
    Z. Yao, M. Zhang, R. Li, L. Yang, Y. Qiao, P. Wang, Angew. Chem. Int. Edit. 54, 5994–5998 (2015)CrossRefGoogle Scholar
  3. 3.
    S. Li, M.,T. Amiri, Y.M. Questellsantiago, H. Florent, Y.D. Li, H. Kim, R. Meilan, C. Chapple, J. Ralph, J.S. Luterbacher, Science 354, 329–333 (2016)CrossRefGoogle Scholar
  4. 4.
    T.E. Mallouk, Nat. Chem. 5, 362 (2013)CrossRefGoogle Scholar
  5. 5.
    J.K. Norskov, C.H. Christensen, Science 312, 1322–1323 (2006)CrossRefGoogle Scholar
  6. 6.
    S. Schuldiner, J. Electrochem. Soc. 99, 488–494 (1952)CrossRefGoogle Scholar
  7. 7.
    W. Sheng, H.A. Gasteiger, S.H. Yang, Acta Crystallogr. 157, B1529 (2010)Google Scholar
  8. 8.
    H. Hu, Z. Jiao, J. Ye, G. Lu, Y. Bi, Nano Energy 8, 103–109 (2014)CrossRefGoogle Scholar
  9. 9.
    M.A. Mcarthur, L. Jorge, S. Coulombe, S. Omanovic, J. Power. Sources. 266, 365–373 (2014)CrossRefGoogle Scholar
  10. 10.
    C.H. Liu, K. Wang, X.R. Zheng, X.C. Liu, Q. Liang, Z.D. Chen, Carbon 139, 1–9 (2018)CrossRefGoogle Scholar
  11. 11.
    M. Simões, S. Baranton, C. Coutanceau, Appl. Catal. B. 110, 40–49 (2011)CrossRefGoogle Scholar
  12. 12.
    X.X. Zou, X.X. Huang, A. Goswami, R. Silva, B.R. Sathe, E. Mikmeková, T. Asefa, Angew. Chem. 53, 4372–4376 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Gong, W. Zhou, M.C. Tsai, J.G. Zhou, M.Y. Guan, M.C. Lin, B. Zhang, Y.F. Hu, D.Y. Huang, J. Yang, S.J. Pennycook, B.J. Hwang, H.J. Dai, Nat. Commun. 5, 4695 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, J. Am. Chem. Soc. 137, 2688–2694 (2015)CrossRefGoogle Scholar
  15. 15.
    C.H. Liu, K. Wang, J. Zhang, Q. Liang, Z.D. Chen, J. Mater. Sci. Electron. 29, 10744–10752 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Gong, H. Dai, Nano Res. 8, 23–39 (2014)CrossRefGoogle Scholar
  17. 17.
    F. Song, X. Hu, J. Am. Chem. Soc. 136, 16481–16484 (2014)CrossRefGoogle Scholar
  18. 18.
    D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai, A.M. Wise, Mu.J. Cheng, D. Sokaras, T.C. Weng, R. Alonso-Mori, R.C. Davis, J.R. Bargar, J.K. Nørskov, A. Nilsson, A.T. Bell, J. Am. Chem. Soc. 137, 1305 (2015)CrossRefGoogle Scholar
  19. 19.
    H.F. Liang, Li.S. Li, F. Meng, L.N. Dang, J.Q. Zhuo, A. Forticaux, Z.C. Wang, S. Jin, Chem. Mater. 27, 5702–5711 (2015)CrossRefGoogle Scholar
  20. 20.
    Q. Wang, D. O’Hare, Chem. Rev. 112, 4124–4155 (2012)CrossRefGoogle Scholar
  21. 21.
    C.H. Kuo, I.M. Mosa, A.S. Poyraz, S. Biswas, A.M. El-Sawy, W.Q. Song, Z. Luo, S.Y. Chen, J.F. Rusling, J. He, S.L. Suib, ACS Catal. 5, 1693–1699 (2015)CrossRefGoogle Scholar
  22. 22.
    L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, J. Am. Chem. Soc. 136, 6744–6753 (2014)CrossRefGoogle Scholar
  23. 23.
    H.W. Liang, S. Brüller, R. Dong, J. Zhang, X. Feng, K. Müllen, Nat. Commun. 6, 7992 (2015)CrossRefGoogle Scholar
  24. 24.
    H.J. Qiu, Y. Ito, W.T. Cong, Y.W. Tan, P. Liu, A. Hirata, T. Fujita, Z. Tang, M.X. Chen, Angew. Chem. 127, 4237–14241 (2015)Google Scholar
  25. 25.
    M. Gong, Y.G. Li, H.L. Wang, Y.Y. Liang, J.Z. Wu, J.G. Zhou, J. Wang, T. Regier, F. Wei, H.J. Dai, J. Am. Chem. Soc. 135, 8452–8455 (2013)CrossRefGoogle Scholar
  26. 26.
    J. Wang, K. Li, H.X. Zhong, D. Xu, Z.L. Wang, Z. Jiang, Z.J. Wu, X.B. Zhang, Angew. Chem. 54, 10530–10534 (2015)CrossRefGoogle Scholar
  27. 27.
    T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, J. Am. Chem. Soc. 136, 13925–13931 (2014)CrossRefGoogle Scholar
  28. 28.
    Z. Zhang, J. Hao, W. Yang, J. Tang, RSC Adv. 6, 9647–9655 (2016)CrossRefGoogle Scholar
  29. 29.
    J.Y.C. Chen, J.T. Miller, J.B. Gerken, S.S. Stahl, Energy Environ. Sci. 7, 1382–1386 (2014)CrossRefGoogle Scholar
  30. 30.
    Q. Jing, Z. Wei, R.J. Xiang, K.J. Liu, H.Y. Wang, M.X. Chen, Y.Z. Han, R. Cao, Adv. Sci. 2, 5203–5208 (2015)Google Scholar
  31. 31.
    C.W. Tang, C.B. Wang, S.H. Chien, Thermochimi. Acta. 473, 68–73 (2008)CrossRefGoogle Scholar
  32. 32.
    A.K. Elizabeth, B.P. Nair, S. Singh, Gopukumar, Electrothim. Acta. 230, 98–105 (2017)CrossRefGoogle Scholar
  33. 33.
    J. Zhang, T. Wang, P. Liu, Y. Liu, J. Ma, D. Gao, Electrochim. Acta 217, 181–186 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and EngineeringChangzhou UniversityChangzhouChina
  2. 2.School of Petrochemical EngineeringChangzhou UniversityChangzhouChina
  3. 3.Qualtec Co., LtdOsakaJapan

Personalised recommendations