Advertisement

BaZrO3 (BZO) nanoparticles as effective pinning centers for YBa2Cu3O7 − δ (YBCO) superconducting thin films

  • Feng Wang
  • Hongxia Tian
Article
  • 14 Downloads

Abstract

In-field pinning enhancement for high temperature YBCO superconducting thin film is one of the most significant issue towards future high field applications. Various pinning nanostructures have been designed to achieve better superconducting performance. In this work, BaZrO3 (BZO) has been introduced into YBCO for pinning enhancement. Small BZO nanoparticles with diameter of ~ 5 nm have been observed in the YBCO matrix with high film quality. The BZO-YBCO film deposited at 840 °C exhibits the highest transition temperature of 90 K. These small nanoparticles can provide effective pinning centers for the superconducting property enhancement of YBCO. By comparing the critical current density (Jc) performance of YBCO films, with or without incorporating BZO nanoparticles, 840 °C deposited BZO-YBCO exhibits obvious higher Jc values of 7.8 MA/cm2, 26.5 MA/cm2 and 64.5 MA/cm2 at the measured temperatures of 65 K, 40 K and 5 K, respectively. The results indicate an effective approach to achieve enhanced in-field performance of YBCO, by introducing small BZO nanoparticles.

Notes

Funding

This study was supported by jiangsu vocational college teachers advanced research project.

References

  1. 1.
    M.K. Wu et al., Phys. Rev. Lett. 589, 908–910 (1987)CrossRefGoogle Scholar
  2. 2.
    S.R. Foltyn et al., Nat. Mater. 6, 631–642 (2007)CrossRefGoogle Scholar
  3. 3.
    D. Christem, Nat. Mater 3, 421–422 (2004)CrossRefGoogle Scholar
  4. 4.
    T. Aytug et al., Supercond. Sci. Technol. 23, 014005 (2010)CrossRefGoogle Scholar
  5. 5.
    V. Selvamanickam, Y. Xie, J. Reeves, Y. Chen, MRS Bull 29, 579 (2004)CrossRefGoogle Scholar
  6. 6.
    M. Ann, P. Sebastian et al., IEEE Trans. Appl. Supercond. 27(4), 7500805 (2009)Google Scholar
  7. 7.
    J. Huang et al., IEEE Trans. Appl. Supercond. 25(3), 7500404 (2015)Google Scholar
  8. 8.
    B. Blagoev et al., J. Phys. 223, 012015 (2010)Google Scholar
  9. 9.
    Y. Nakamura et al., IEEE Trans. Appl. Supercond 15(2), 3028–3030 (2005)CrossRefGoogle Scholar
  10. 10.
    A. Goyal, M.P. Paranthaman, U. Schoop, MRS Bull. 29(8), 552–561 (2004)CrossRefGoogle Scholar
  11. 11.
    V. Matias et al., Supercond. Sci. Technol. 23, 014018 (2010)CrossRefGoogle Scholar
  12. 12.
    M.S. Bhuiyan et al., Supercond. Sci. Technol. 16, 1305 (2003)CrossRefGoogle Scholar
  13. 13.
    T. Caroff et al., Supercond. Sci. Technol. 21, 075007 (2008)CrossRefGoogle Scholar
  14. 14.
    T. Haugan et al., Nature 430, 7002 (2004)CrossRefGoogle Scholar
  15. 15.
    F. Wang, J. Mater. Sci. 27, 7084–7088 (2016)Google Scholar
  16. 16.
    A.K. Jha et al., Supercond. Sci. Technol. 27, 025009 (2014)CrossRefGoogle Scholar
  17. 17.
    A. Ichinose et al., Supercond. Sci. Technol. 20, 12 (2007)CrossRefGoogle Scholar
  18. 18.
    J. Huang et al., Ceram. Int. 42, 12202–12209 (2016)CrossRefGoogle Scholar
  19. 19.
    S.H. Wee, Supercond. Sci. Technol. 23, 1 (2010)CrossRefGoogle Scholar
  20. 20.
    T. Horide et al., Supercond. Sci. Technol. 26,075019(2013)Google Scholar
  21. 21.
    H. Zhou et al., Supercond. Sci. Technol. 22, 085013 (2009)CrossRefGoogle Scholar
  22. 22.
    C. Stuart et al., Physica 470, S223–S224 (2010)Google Scholar
  23. 23.
    T. Petrisor et al., J. Appl. Phys. 112, 053919 (2012)CrossRefGoogle Scholar
  24. 24.
    J. Huang et al., J. Appl. Phys. 115, 123902 (2014)CrossRefGoogle Scholar
  25. 25.
    J. Huang, H. Wang, Supercond. Sci. Technol. 30,114004(2017)Google Scholar
  26. 26.
    J.L. MacManus-Driscoll et al., Nat. Mater. 3, 439–443 (2004)CrossRefGoogle Scholar
  27. 27.
    S.H. Wee et al., Sci. Rep. 3, 2310 (2013)CrossRefGoogle Scholar
  28. 28.
    A. Pomar et al., IEEE Trans. Appl. Supercond 19(3), 3258–3261 (2009)CrossRefGoogle Scholar
  29. 29.
    J. Huang et al., IEEE Trans. Appl. Supercond. 27(4), 8000305 (2017)Google Scholar
  30. 30.
    I. Birlik et al., J. Phys. 234, 012004 (2010)Google Scholar
  31. 31.
    C.P. Bean, Phys. Rev. Lett. 8, 250 (1962)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Vehicle EngineeringChangzhou Institute of Mechatronic TechnologyChangzhouChina

Personalised recommendations