Advertisement

Temperature dependant electronic charge transport characteristics at MX2 (M = Mo, W; X = S, Se)/Si heterojunction devices

  • C. K. SumeshEmail author
Article

Abstract

Nanosheets of two dimensional (2D) transition metal dichalcogenides (WS2, MoS2 and WSe2) have been synthesized by two stage solvothermal mediated sonochemical exfoliation method. The as-synthesized high quality and stable dispersions in the form of few layer nanosheets were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy. The nanosheets were deposited on p-type silicon wafer to from WS2/p-Si, MoS2/p-Si, and WSe2/p-Si, heterojunction diodes. Temperature dependent transport properties and conduction behavior were analyzed using I–V characteristics. Thermionic emission transport model with T0 affected current transport mechanism across the junction was found as the most possible current transport model for all the three prepared diodes. The results provide an easy and large area preparation of 2D layered transition metal dichalcogenide semiconductors for unique electro-optical applications.

References

  1. 1.
    Z. Wang, B. Mi, Environmental applications of 2D molybdenum disulfide (MoS2) nanosheet. Environ. Sci. Technol. 51(15), 8229–8244 (2017)CrossRefGoogle Scholar
  2. 2.
    R. Dong, I. Kuljanishvili, Review article: progress in fabrication of transition metal dichalcogenides heterostructure systems. J. Vac. Sci. Technol. B 35(3), 030803 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Sun, R. Wang, K. Liu, Substrate induced changes in atomically thin 2-dimensional semiconductors: fundamentals, engineering, and applications. Appl. Phys. Rev. 4, 011301 (2017)CrossRefGoogle Scholar
  4. 4.
    H. Yan, A. Sharma, L. Zhang, X. Sun, B. Liu, Y. Lu, Highly enhanced many-body interactions in anisotropic 2D semiconductors. Acc. Chem. Res. 51(5), 1164–1173 (2018)CrossRefGoogle Scholar
  5. 5.
    M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013)CrossRefGoogle Scholar
  6. 6.
    H. Chen, V. Corboliou, A.S. Solntsev, D.-Y. Choi, M.A. Vincenti, D. de Ceglia, C. de Angelis, Y. Lu, D.N. Neshev, Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light Sci. Appl. 6(10), e17060 (2017)CrossRefGoogle Scholar
  7. 7.
    L. Li, R. Long, O.V. Prezhdo, Charge separation and recombination in two-dimensional MoS2/WS2: time-domain ab Initio modeling. Chem. Mater. 29(6), 2466–2473 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Mushtaq, S. Ghosh, A.S. Sarkar, S.K. Pal, Multiple exciton harvesting at zero-dimensional/two-dimensional heterostructures. ACS Energy Lett. 2(8), 1879–1885 (2017)CrossRefGoogle Scholar
  9. 9.
    A. Bandyopadhyay, D. Ghosh, S.K. Pati, Shining light on new-generation two-dimensional materials from a computational viewpoint. J. Phys. Chem. Lett. 9(7), 1605–1612 (2018)CrossRefGoogle Scholar
  10. 10.
    K.S. Kumar, N. Choudhary, Y. Jung, J. Thomas, Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Lett. 3(2), 482–495 (2018)CrossRefGoogle Scholar
  11. 11.
    J. Xiao, M. Zhao, Y. Wang, X. Zhang, Excitons in atomically thin 2D semiconductors and their applications. Nanophotonics 6(6), 1–20 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Luo, Y.E. Xu, Electrically tunable band gap of the 1T-MoS2 based heterostructure: a first-principles calculation. Optik 159, 222–228 (2018)CrossRefGoogle Scholar
  13. 13.
    S. Yang, C. Jiang, S. Wei, Gas sensing in 2D materials. Appl. Phys. Rev. 4, 021304 (2017)CrossRefGoogle Scholar
  14. 14.
    C.S. Woodhead, J. Roberts, Y.J. Noori, Y. Cao, R. Bernardo-Gavito, P. Tovee, A. Kozikov, K. Novoselov, R.J. Young, Increasing the light extraction and longevity of TMDC monolayers using liquid formed micro-lenses. 2D Mater. 4, 01503 (2017)Google Scholar
  15. 15.
    C.R. Ryder, J.D. Wood, S.A. Wells, M.C. Hersam, Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano. 10(4), 3900–3917 (2017)CrossRefGoogle Scholar
  16. 16.
    L. Gao, Flexible device applications of 2D semiconductors. Small 13(35), 1603994 (2017)CrossRefGoogle Scholar
  17. 17.
    J.Y. Lee, J.-H. Shin, G.-H. Lee, C.-H. Lee, Two-dimensional semiconductor optoelectronics based on van der Waals heterostructures. Nanomaterials 6(11), 193 (2016)CrossRefGoogle Scholar
  18. 18.
    G.B.M. Stan, M.C. Toroker, Lateral chemical bonding in two-dimensional transition-metal dichalcogenide metal/semiconductor heterostructures. J. Phys. Chem. C 122(10), 5401–5410 (2018)CrossRefGoogle Scholar
  19. 19.
    Y. Gao, B. Xu, On the generalized thermal conductance characterizations of mixed one-dimensional–two-dimensional van der Waals heterostructures and their implication for pressure sensors. ACS Appl. Mater. Interfaces 10(16), 14221–14229 (2018)CrossRefGoogle Scholar
  20. 20.
    R. Zhou, V. Ostwal, J. Appenzeller, Vertical versus lateral two-dimensional heterostructures: on the topic of atomically abrupt p/n-junctions. Nano Lett. 17(8), 4787–4792 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Behura, V. Berry, Interfacial nondegenerate doping of MoS2 and other two-dimensional semiconductors. ACS Nano 9(3), 2227–2230 (2015)CrossRefGoogle Scholar
  22. 22.
    K. Singh, R.K. Pandey, R. Prakash, J. Eom, Tailoring the charge carrier in few layers MoS2 field-effect transistors by Au metal adsorbate. Appl. Surf. Sci. 437, 70–74 (2018)CrossRefGoogle Scholar
  23. 23.
    S. Ridene, Large optical gain from the 2D-transition metal dichalcogenides of MoS2/WSe2 quantum wells. Superlattices Microstruct. 114, 379–385 (2018)CrossRefGoogle Scholar
  24. 24.
    M.J. Park, K. Park, H. Ko, Near-infrared photodetector achieved by chemically-exfoliated multilayered MoS2 flakes. Appl. Surf. Sci. 448, 64–70 (2018)CrossRefGoogle Scholar
  25. 25.
    M. Saraf, K. Natarajan, S.M. Mobin, M. Saraf, K. Natarajan, S.M. Mobin, Emerging robust heterostructure of MoS2–rGO for high-performance supercapacitors. ACS Appl. Mater. Interfaces 10(19), 16588–16595 (2018)CrossRefGoogle Scholar
  26. 26.
    X. Jiang, B. Sun, Y. Song, M. Dou, J. Ji, F. Wang, One-pot synthesis of MoS2/WS2 ultrathin nanoflakes with vertically aligned structure on indium tin oxide as a photocathode for enhanced photo-assistant electrochemical hydrogen evolution reaction. RSC Adv. 7, 49309 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Tao, J. Chai, L. Guan, J. Pan, S. Wang, Effect of interfacial coupling on photocatalytic performance of large scale MoS2/TiO2 hetero-thin films. Appl. Phys. Lett. 106, 081602 (2015)CrossRefGoogle Scholar
  28. 28.
    J. Xiong, Y. Liu, D. Wang, S. Liang, W. Wua, L. Wu, An efficient cocatalyst of defect-decorated MoS2 ultrathin nanoplates for the promotion of photocatalytic hydrogen evolution over CdS nanocrystals. J. Mater. Chem. A. 3, 12631 (2015)CrossRefGoogle Scholar
  29. 29.
    X. Zong, G. Wu, H. Yan, G. Ma, J. Shi, F. Wen, L. Wang, C. Li, Photocatalytic H2 evolution on MoS2/CdS catalysts under visible light irradiation. J. Phys. Chem. C 114 (4), 1963 (2010)CrossRefGoogle Scholar
  30. 30.
    Y. Liu, Y. Yu, W. Zhang, MoS2/CdS heterojunction with high photoelectrochemical activity for H2 evolution under visible light: the role of MoS2. J. Phys. Chem. C 117(25), 12949 (2013)CrossRefGoogle Scholar
  31. 31.
    S. Han, H. Liu, P. Yu, X. Fang, L. Zheng, Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small 12, 1527 (2016)CrossRefGoogle Scholar
  32. 32.
    Y. Tan, K. Yu, J. Li, H. Fu, Z. Zhu, MoS2@ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties. J. Appl. Phys. 116, 064305 (2014)CrossRefGoogle Scholar
  33. 33.
    L. Chacko, A. Poyyakkara, V.B. Sameer Kumar, P.M. Aneesh, MoS2–ZnO nanocomposites as highly functional agents for anti-angiogenic and anti-cancer theranostics. J. Mater. Chem. B 6, 3048–3057 (2018)CrossRefGoogle Scholar
  34. 34.
    W. Wu, S. Tang, J. Gub, X. Caocd, Realizing semiconductor to metal transition in graphitic ZnO and MoS2 nanocomposite with external electric field. RSC Adv. 5, 99153 (2015)CrossRefGoogle Scholar
  35. 35.
    M.E. Arani, A.S. Nasab, M. Nasrabadi, F. Ahmadi, S. Pourmasoud, Ultrasound-assisted synthesis of YbVO4 nanostructure and YbVO4/CuWO4 nanocomposites for enhanced photocatalytic degradation of organic dyes under visible light. Ultrason. Sonochem. 43, 120–135 (2018)CrossRefGoogle Scholar
  36. 36.
    M.S. Niasari, F. Soofivand, A.S. Nasab, S.A. Maryam, H. Masood, S. Bagheri, Facile synthesis and characterization of CdTiO3nanoparticles by Pechini sol–gel method. J. Mater. Sci. 28, 14965–14973 (2017)Google Scholar
  37. 37.
    A.S. Nasab, A. Ziarati, M.R. Nasrabadi, M.R. Ganjali, A. Badiei, Five-component domino synthesis of tetrahydropyridines using hexagonal PbCr x Fe12 – x O19 as efficient magnetic nanocatalyst. Res. Chem. Intermed. 43, 6155–6165 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Pourmasoud, A.S. Nasab, M. Behpour, M.R. Nasrabadi, F. Ahmadi, Investigation of optical properties and the photocatalytic activity of synthesized YbYO4 nanoparticles and YbVO4/NiWO4 nanocomposites by polymeric capping agents. J. Mol. Struct. 1157, 607–615 (2018)CrossRefGoogle Scholar
  39. 39.
    S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, Investigation the effect of temperature and polymeric capping agents on the size and photocatalytic properties of NdVO4 nanoparticles. J. Mater. Sci. 28, 16459–16466 (2018)Google Scholar
  40. 40.
    W. Li, D. Chen, F. Xia, J.Z.Y. Tan, J. Song, W. Songe, R.A. Caruso, Flower like WSe2 and WS2 microspheres: one-pot synthesis, formation mechanism and application in heavy metal ion sequestration. Chem. Commun. 52, 4481–4484 (2016)CrossRefGoogle Scholar
  41. 41.
    S. Kapatel, C. Mania, C.K. Sumesh, Salt assisted sonochemical exfoliation and synthesis of highly stable few-to-monolayer WS2 quantum dots with tunable optical properties. J. Mater. Sci. (2017).  https://doi.org/10.1007/s10854-017-6399-3 Google Scholar
  42. 42.
    S. Bertolazzi, D. Lembke, A. Kis, Single-layer MoS2 electronics. Acc. Chem. Res. 48(1), 100–110 (2015)CrossRefGoogle Scholar
  43. 43.
    C.K. Sumesh, S. Kapatel, A. Chaudhari, An approach for scalable production of silver (Ag) decorated WS2 nanosheets. AIP Conf. Proc. 1961, 030003 (2018)CrossRefGoogle Scholar
  44. 44.
    F. Jiang, J. Xiong, W. Zhou, C. Liu, L. Wang, F. Zhao, H. Liu, J. Xu, Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. J. Mater. Chem. A. 4, 5265 (2016)CrossRefGoogle Scholar
  45. 45.
    D. Sun, R.E. Schaak, Solution-mediated growth of two-dimensional SnSe@GeSe nanosheet heterostructures. Chem. Mater. 29(2), 817–822 (2017)CrossRefGoogle Scholar
  46. 46.
    G. Yong-Ping, H. Ke-Jing, X. Wu, H. Zhi-Qiang, L. Yuan-Yuan, MoS2 nanosheets assembling three-dimensional nanospheres for enhanced-performance supercapacitor. J. Alloys Compds. 741, 174–181 (2018)CrossRefGoogle Scholar
  47. 47.
    Y. Jung, J. Shen, Y. Sun, J.J. Cha, Chemically synthesized heterostructures of two-dimensional molybdenum/tungsten-based dichalcogenides with vertically aligned layers. ACS Nano 8(9), 9550–9557 (2014)CrossRefGoogle Scholar
  48. 48.
    W. Wu, S. Tang, J. Gub, X. Cao, Realizing semiconductor to metal transition in graphitic ZnO and MoS2 nanocomposite with external electric field. RSC Adv. 5, 99153 (2015)CrossRefGoogle Scholar
  49. 49.
    H. Li, H. Wu, S. Yuan, H. Qia, Synthesis and characterization of vertically standing MoS2 nanosheets. Sci. Rep. 6, 21171 (2016)CrossRefGoogle Scholar
  50. 50.
    M. Baby, K.R. Kumar, Structural and optical characterization of stacked MoS2 nanosheets by hydrothermal method. J. Mater. Sci. 29, 4658–4667 (2018)Google Scholar
  51. 51.
    C.J. Liu, U. Burghaus, F. Besenbacher, Z.L. Wang, Preparation and characterization of nanomaterials for sustainable energy production. ACS Nano 4(10), 5517–5526 (2010)CrossRefGoogle Scholar
  52. 52.
    C. Lin, Y. Sun, S. Luo, Two-dimensional nitrogen-enriched carbon nanosheets with surface-enhanced Raman scattering. J. Phys. Chem. C 121(27), 14795–14802 (2017)CrossRefGoogle Scholar
  53. 53.
    E.H. Rhoderick, R.H. Williams, MetalSemiconductor Contacts, 2nd edn. (Claredon Press, Oxford, 1988), p. 13Google Scholar
  54. 54.
    R.T. Tung, Recent advances in Schottky barrier concepts. Mater. Sci. Eng. R 35, 1–38 (2001)CrossRefGoogle Scholar
  55. 55.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)Google Scholar
  56. 56.
    I. Jyothi, Y. Hyun-Deok, S. Kyu-Hwan, V. Janardhanam, K. Seung-Min, H. Hyobong, C. Chel-Jong, Temperature dependency of Schottky barrier parameters of Ti Schottky contacts to Si-on-insulator. Mater. Trans. 54, 1655–1660 (2013)CrossRefGoogle Scholar
  57. 57.
    H. Uslua, S. Altındal, I. Polat, H. Bayrak, E. Bacaksız, On the mechanism of current-transport in Cu/CdS/SnO2/In–Ga structures. J. Alloy. Compd. 509, 5555–5561 (2011)CrossRefGoogle Scholar
  58. 58.
    P. Tanner, A. Iacopi, H. Phan, S. Dimitrijev, L. Hold, K. Chaik, G. Walker, D.V. Dao, N. Nguyen, Excellent rectifying properties of the n-3C-SiC/p-Si heterojunction subjected to high temperature annealing for electronics, MEMS, and LED applications. Sci. Rep. 7(1), 17734 (2017)CrossRefGoogle Scholar
  59. 59.
    H.H. Gullua, M. Parlaka, Device characterization of ZnInSe2 thin films. Energy Procedia 102, 110–120 (2016)CrossRefGoogle Scholar
  60. 60.
    K.S. Prashant, P. Kumar, M.L. Free, Anomalous electrical bistability in lateral grain rich polycrystalline molybdenum disulfide thin films. Vacuum. (2018).  https://doi.org/10.1016/j.vacuum.2018.05.014 Google Scholar
  61. 61.
    A. Kumar, S. Arafin, M.C. Amann, R. Singh, Temperature dependence of electrical characteristics of Pt/GaNSchottky diode fabricated by UHV e-beam evaporation. Nanoscale Res Lett. 8(1), 481 (2013)CrossRefGoogle Scholar
  62. 62.
    R. X.Li, Grassi, S.Li, T., X. Li, T. Xiong, Y.Wu Low, Anomalous temperature dependence in metal—black phosphorus contact. Nano Lett. 18, 26–31 (2018)CrossRefGoogle Scholar
  63. 63.
    S. Paul, J. Sultana, A. Bhattacharyya, A. Karmakar, S. Chattopadhyay, Investigation of the comparative photovoltaic performance of n-ZnO nanowire/p-Si and n-ZnO nanowire/p-CuO heterojunctions grown by chemical bath deposition method. Optik 164, 745–752 (2018)CrossRefGoogle Scholar
  64. 64.
    S. Mahato, J. Puigdollers, Temperature dependent current-voltage characteristics of Au/n-Si Schottky barrier diodes and the effect of transition metal oxides as an interface layer. Physica B 530, 327–335 (2018)CrossRefGoogle Scholar
  65. 65.
    Z. Yang, L. Liao, F. Gong, F. Wang, Z. Wang, X. Liu, X. Xiao, W. Hu, J. He, X. Duan, WSe2/GeSe heterojunction photodiode with giant gate tenability. Nano Energy 49, 103–108 (2018)CrossRefGoogle Scholar
  66. 66.
    Y. Zhang, Y. Yu, L. Mi, H. Wang, Z. Zhu, Q.Wu,Y. Zhang, Y. Jiang, In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible–near-infrared photodetectors. Small 12, 1062–1071 (2016)CrossRefGoogle Scholar
  67. 67.
    Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H.M. Hill, A.M. van der Zande, D.A. Chenet, E.-M. Shih, J. Hone, T.F. Heinz, Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90(20), 205422 (2014)CrossRefGoogle Scholar
  68. 68.
    C.V. Nguyen, Tuning the electronic properties and Schottky barrier height of the vertical graphene/MoS2 heterostructure by an electric gating. Superlattices Microstruct. 116, 79–87 (2018)CrossRefGoogle Scholar
  69. 69.
    S.B. Son, Y. Kim, B. Cho, C. Choi, W. Hong, Temperature-dependent electronic charge transport characteristics at MoS2/p-type Ge heterojunctions. J. Alloy. Compd. 757, 221–227 (2018)CrossRefGoogle Scholar
  70. 70.
    A.S. Kumar, M. Yoshiya, Native point defects in MoS2 and their influences on optical properties by first principles calculations. Physica B 532, 184–194 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physical Sciences, P. D. Patel Institute of Applied SciencesCharotar University of Science and Technology (CHARUSAT)ChangaIndia

Personalised recommendations