Advertisement

Cubic MgZnO thin films on sapphire substrate: effect of deposition temperature

  • Nihan Akin SönmezEmail author
Article
  • 21 Downloads

Abstract

The structural, morphological and optical properties of cubic MgZnO thin films deposited on sapphire substrates by radio frequency (RF) magnetron sputtering method at different deposition temperatures (RT, 500 °C and 800 °C) were investigated. The presence of Mg in deposited samples was confirmed through SIMS depth profile. Moreover, Mg content of the alloys was calculated using a quadratic approximation depending on band gap bowing parameter. The film deposited at 500 °C with band gap energy of 5.0 eV has better crystallinity and atomic homogeneity than the others. Both film quality and Mg atomic distribution deteriorated at 800 °C due to thermal effect on the substrate surface. The results explore the applicability of RF-sputtered cubic MgZnO thin films as an active sensor area for deep UV-based optoelectronic applications.

Notes

Acknowledgements

This work was supported by Republic of Turkey Ministry of Development under the project number of 2016K121220.

References

  1. 1.
    Z. Ke, Z. Yang, M. Wang, M. Cao, Z. Sun, J. Shao, Sens. Actuators A 253, 173–180 (2017)CrossRefGoogle Scholar
  2. 2.
    S.K. Shaikh, S.I. Inamdar, V.V. Ganbavle, K.Y. Rajpure, J. Alloys Compd. 664, 242–249 (2016)CrossRefGoogle Scholar
  3. 3.
    J. Hüpkes, J.I. Owen, S.E. Pust, E. Bunte, ChemPhysChem 13(1), 66–73 (2012)CrossRefGoogle Scholar
  4. 4.
    S.J. Pearton, F. Ren, Curr. Opin. Chem. Eng. 3, 51–55 (2014)CrossRefGoogle Scholar
  5. 5.
    Y.S. Choi, J.W. Kang, D.K. Hwang, S.J. Park, IEEE Trans. Electron Devices 57(1), 26–41 (2010)CrossRefGoogle Scholar
  6. 6.
    D. Thapa, J. Huso, K. Miklos, P.M. Wojcik, D.N. McIlroy, J.L. Morrison, C. Corolewski, M.D. McCluskey, T.J. Williams, M.G. Norton, L. Bergman, J. Mater. Sci. 28, 2511–2520 (2017)Google Scholar
  7. 7.
    S.J. Yoo, J.H. Lee, C.Y. Kim, C.H. Kim, J.W. Shin, H.S. Kim, J.G. Kim, Thin Solid Films 588, 50–55 (2015)CrossRefGoogle Scholar
  8. 8.
    Z. Alaie, S.M. Nejad, M.H. Yousefi, Mater. Sci. Semicond. Process. 29, 16–55 (2015)CrossRefGoogle Scholar
  9. 9.
    A. Kaushal, D. Kaur, Sol. Energy Mater. Sol. Cells 93, 193–198 (2009)CrossRefGoogle Scholar
  10. 10.
    J.V. Li, X. Li, Y. Yan, C.S. Jiang, W.K. Metzger, I.L. Repins, M.A. Contreras, D.H. Levi, J. Vac. Sci. Technol. B 27(6), 2384–2389 (2009)CrossRefGoogle Scholar
  11. 11.
    X. Zhang, E.M. Johansson, J. Mater. Chem A 5(1), 303–310 (2017)CrossRefGoogle Scholar
  12. 12.
    N.B. Chen, H.Z. Wu, D.J. Qiu, T.N. Xu, J. Chen, W.Z. Shen, J. Phys. 16, 2973–2980 (2004)Google Scholar
  13. 13.
    X. Chen, J. Kang, Semicon. Sci. Technol. 23(2), 025008 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Han, Y.K. Shao, Y.M. Lu, P.J. Cao, W.J. Liu, Y.X. Zeng, F. Jia, D.L. Zhu, Mater. Res. Bull. 64, 76–81 (2015)CrossRefGoogle Scholar
  15. 15.
    S.Z. Vashaei, T. Minegishi, H. Suzuki, T. Hanada, M.W. Cho, T. Yao, J. Appl. Phys. 98(5), 054911 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Han, J. Zhang, Z. Zhang, Y. Zhao, L. Wang, J. Zheng, B. Yao, D. Zhao, D. Shen, Appl. Mater. Interfaces 2(7), 1918–1921 (2010)CrossRefGoogle Scholar
  17. 17.
    L.K. Wang, Z.G. Ju, C.X. Shan, J. Zheng, B.H. Li, Z.Z. Zhang, B. Yao, D.X. Zhao, D.Z. Shen, J.Y. Zhang, J. Cryst. Growth 312, 875–877 (2010)CrossRefGoogle Scholar
  18. 18.
    J.Z. Chen, C.H. Li, I.C. Cheng, Thin Solid Films 520, 1918–1923 (2012)CrossRefGoogle Scholar
  19. 19.
    C. Tian, D. Jiang, Z. Tan, Q. Dua, R. Liu, L. Sun, J. Qin, J. Hou, S. Gao, Q. Liang, J. Zhao, Mater. Res. Bull. 60, 46–50 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Han, D.Z. Shen, J.Y. Zhang, Y.M. Zhao, D.Y. Jiang, Z.G. Ju, D.X. Zhao, B. Yao, J. Alloys Comp. 485, 794–797 (2009)CrossRefGoogle Scholar
  21. 21.
    H.B. Cuong, N.M. Le, S.H. Jeong, B.T. Lee, J. Alloys Compd. 709, 54–63 (2017)CrossRefGoogle Scholar
  22. 22.
    L. Zhang, Y. Shao, X. Hao, Y. Wu, S. Qu, X. Chen, X. Xu, J. Cryst. Growth 334(1), 62–66 (2011)CrossRefGoogle Scholar
  23. 23.
    S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan, H. Shen, Appl. Phys. Lett. 80(9), 1529–1531 (2002)CrossRefGoogle Scholar
  24. 24.
    I. Takeuchi, W. Yang, K.S. Chang, M.A. Aronova, T. Venkatesan, R.D. Vispute, L.A. Bendersky, J. Appl. Phys. 94(11), 7336–7340 (2003)CrossRefGoogle Scholar
  25. 25.
    M.M. Fan, K.W. Liu, X. Chen, Z.Z. Zhang, B.H. Li, H.F. Zhao, D.Z. Shen, J. Mater. Chem. C 3(2), 313–317 (2015)CrossRefGoogle Scholar
  26. 26.
    S. Han, D.Z. Shen, J.Y. Zhang, Y.M. Zhao, D.Y. Jiang, Z.G. Ju, D.X. Zhao, B. Yao, Vacuum 84(9), 1149–1153 (2010)CrossRefGoogle Scholar
  27. 27.
    J.D. Hwang, J.S. Lin, S.B. Hwang, J. Phys. D 48(40), 405103 (2015)CrossRefGoogle Scholar
  28. 28.
    J. Chen, W.Z. Shen, N.B. Chen, D.J. Qiu, H.Z. Wu, J. Phys. 15(30), L475 (2003)Google Scholar
  29. 29.
    X. Wang, K. Saito, T. Tanaka, M. Nishio, T. Nagaoka, M. Arita, Q. Guo, Appl. Phys. Lett. 107(2), 022111 (2015)CrossRefGoogle Scholar
  30. 30.
    Y.C. Lin, B.L. Wang, W.T. Yen, C.T. Ha, C. Peng, Thin Solid Films 518, 4928–4934 (2010)CrossRefGoogle Scholar
  31. 31.
    H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures (Wiley, New York, 1974)Google Scholar
  32. 32.
    A.A. Al-Ghamdi, O.A. Al-Hartomy, M. El Okr, A.M. Nawar, S. El-Gazzar, F. El-Tantawy, F. Yakuphanoglu, Spectrochim. Acta A 131, 512–517 (2014)CrossRefGoogle Scholar
  33. 33.
    M. Takeuchi, S. Kashimura, S. Ozawa, Vacuum 41, 1636–1637 (1990)CrossRefGoogle Scholar
  34. 34.
    Y. Hou, Z. Mei, X. Du, J. Phys. D 47(28), 283001 (2014)CrossRefGoogle Scholar
  35. 35.
    H. Zhang, J.F. Banfield, J. Mater. Chem. 8(9), 2073–2076 (1998)CrossRefGoogle Scholar
  36. 36.
    J. Singh, S. Ranwa, J. Akhtar, M. Kumar, AIP Adv. 5, 067140 (2015)CrossRefGoogle Scholar
  37. 37.
    A. Ashok, L.J. Kennedy, J.J. Vijaya, U. Aruldoss, Clean Technol. Environ. Policy 20, 1219–1231 (2018)CrossRefGoogle Scholar
  38. 38.
    J. Tauc, The Optical Properties of Solids (North-Holland, Amsterdam, 1970)Google Scholar
  39. 39.
    N. Akin, U.C. Baskose, B. Kinaci, M. Cakmak, S. Ozcelik, Appl. Phys. A 119(3), 965–970 (2015)CrossRefGoogle Scholar
  40. 40.
    H.Q. Ni, Y.F. Lu, Z.M. Ren, J. Appl. Phys. 91, 1339–1343 (2002)CrossRefGoogle Scholar
  41. 41.
    A. Schleife, C. Rödl, J. Furthmüller, F. Bechstedt, N. J. Phys. 13(8), 085012 (2011)CrossRefGoogle Scholar
  42. 42.
    J. Gupta, D. Bahadur, ACS Omega 3, 2956–2965 (2018)CrossRefGoogle Scholar
  43. 43.
    S.S. Cetin, I. Uslu, A. Aytimur, S. Ozcelik, Ceram. Int. 38(5), 4201–4208 (2012)CrossRefGoogle Scholar
  44. 44.
    T.R. Stara, I.V. Markevich, S. Physics, Quantum Electron. Optoelectron. 20(1), 137–141 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Photonics Application and Research CenterGazi UniversityAnkaraTurkey
  2. 2.Department of Electrics and Energy, Technical Sciences VSGazi UniversityAnkaraTurkey

Personalised recommendations