Effect of PVP on fabrication of Cu nanoparticles using an electrical wire explosion method

  • Choong-Jae Lee
  • Kwang-Ho Jung
  • Bum-Geun Park
  • Yongil Kim
  • Seung-Boo JungEmail author


Cu nanoparticles have several advantages such as their high electrical and thermal conductivity and low cost. Electrical wire explosion (EWE) method is one of the methods used to fabricate metal nanoparticles. The advantages of this technique are the high purity of the nanoparticles, ability to employ this technique in large-scale manufacturing, and high energy efficiency. In previous research, polyvinylpyrrolidone (PVP) was shown to prevent the agglomeration of metal nanoparticles. However, the effect of PVP on Cu nanoparticle synthesis using the EWE method has not been investigated. This study describes the effects of PVP on the size and shape of Cu nanoparticles made by the EWE method. Experiments were carried out with Cu/PVP colloids that were exploded by a current pulse voltage within a few microseconds. The experiment was conducted with various contents and molecular weights of PVP. Fabricated Cu nanoparticles were identified with field-emission scanning electron microscopy and high-resolution transmission electron microscopy. The size of the Cu nanoparticles was measured by the direct light scattering method. The smallest nanoparticles were about 21 nm and obtained when PVP with a molecular weight of 360,000 and content of 1.0 wt% was used. The shape of the nanoparticles changed from anisotropic to isotropic with increasing content and molecular weight of PVP. The electrical resistivity of printed Cu patterns decreased as the Cu nanoparticle get smaller.



This work was supported by “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (Grant No. 20174030201800). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2017R1D1A1B03035402).


  1. 1.
    J. Perelaer, A.W.M. de Laat, C.E. Hendriksa, U.S. Schubert, J. Mater. Chem. 18, 3209 (2008)CrossRefGoogle Scholar
  2. 2.
    C.K. Kim, G.J. Lee, M.K. Lee, C.K. Rhee, Powder Technol. 263, 1 (2014)CrossRefGoogle Scholar
  3. 3.
    H.H. Nersisyan, J.H. Lee, H.T. Son, C.W. Won, D.Y. Maeng, Mater. Res. Bull. 38, 949 (2003)CrossRefGoogle Scholar
  4. 4.
    H.S. Kim, S.R. Dhage, D.E. Shim, H.T. Hahn, Appl. Phys. A 97, 791 (2009)CrossRefGoogle Scholar
  5. 5.
    P. Pulkkinen, J. Shan, K. Leppa¨nen, A. Ka¨nsa¨koski, A. Laiho, M. Ja¨rn, H. Tenhu, Appl. Mater. Sci. 1, 519 (2009)CrossRefGoogle Scholar
  6. 6.
    K.H. Jung, K.S. Kim, B.G. Park, S.B. Jung, J. Nanosci. Nanotechnol. 14, 9493 (2014)CrossRefGoogle Scholar
  7. 7.
    Y.H. Kim, D.K. Lee, B.G. Jo, J.H. Jeong, Y.S. Kang, Colloids Surf. A 284, 364 (2006)CrossRefGoogle Scholar
  8. 8.
    Y. Kobayashi, S. Ishida, K. Ihara, Y. Yasuda, T. Morita, S. Yamada, Colloid Polym. Sci. 287, 877 (2009)CrossRefGoogle Scholar
  9. 9.
    V.S. Giri, R. Sarathi, S.R. Chakravarthy, C. Venkataseshaiah, Mater. Lett. 58, 1047 (2004)CrossRefGoogle Scholar
  10. 10.
    R. Sarathi, T.K. Sindhu, S.R. Chakravarthy, Mater. Charact. 58, 148 (2007)CrossRefGoogle Scholar
  11. 11.
    R. Sarathi, T.K. Sindhu, S.R. Chakravarthy, A. Sharma, K.V. Nagesh, J. Alloys Compd. 475, 658 (2009)CrossRefGoogle Scholar
  12. 12.
    T.K. Sindhu, R. Sarathi, S.R. Chakravarthy, Nanotechnology 19, 025703 (2008)CrossRefGoogle Scholar
  13. 13.
    Y.E. Krasik, A. Fedotov, D. Sheftman, S. Efimov, A. Sayapin, V.T. Gurovich, D. Veksler, G. Bazalitski, S. Gleizer, A. Grinenko, V.I. Oreshkin, Plasma Sources Sci. Technol. 19, 034020 (2010)CrossRefGoogle Scholar
  14. 14.
    Y.W. C.Cho, C. Choi, G.W. Kang, Lee, Appl. Phys. Lett. 91, 141501 (2007)CrossRefGoogle Scholar
  15. 15.
    R. Sarathi, T.K. Sindhu, S.R. Chakravarthy, Mater. Lett. 61, 1823 (2007)CrossRefGoogle Scholar
  16. 16.
    A. Grinenko, A. Sayapin, V. Tz. S. Gurovich, J. Efimov, Ya.E. Felsteiner, Krasik, J. Appl. Phys. 97, 023303 (2005)CrossRefGoogle Scholar
  17. 17.
    A. Grinenko, Ya.E. Krasik, S. Efimov, A. Fedotov, V. Tz. Gurovich, Phys. Plasmas 13, 042701 (2006)CrossRefGoogle Scholar
  18. 18.
    Y. Jianfeng, Z. Guisheng, H. Anming, Y.N. Zhou, J. Mater. Chem. 21, 15981 (2011)CrossRefGoogle Scholar
  19. 19.
    Y. Borodko, S.E. Habas, M. Koebel, P. Yang, H. Frei, G.A. Somorjai, J. Phys. Chem. B 110, 23052 (2006)CrossRefGoogle Scholar
  20. 20.
    Z. Zhang, B. Zhao, L. Hu, J. Solid State Chem. 121, 105 (1996)CrossRefGoogle Scholar
  21. 21.
    A.J. Paine, W. Luymes, J. McNulty, Macromolecules 23, 3104 (1990)CrossRefGoogle Scholar
  22. 22.
    S. Jeong, K. Woo, D. Kim, S. Lim, J.S. Kim, H. Shin, Y. Xia, J. Moon, Adv. Funct. Mater. 18, 679 (2008)CrossRefGoogle Scholar
  23. 23.
    V.S. Sedoi, Y.F. Ivanov, Nanotechnology 19, 145710 (2008)CrossRefGoogle Scholar
  24. 24.
    I.P. Santos, L.M.L. Marza´n, Langmuir 18, 2888 (2002)CrossRefGoogle Scholar
  25. 25.
    K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Dalton Trans. 44, 17883 (2015)CrossRefGoogle Scholar
  26. 26.
    S. Krishnan, A.S.M.A. Haseeb, M.R. Johan, Ceram. Int. 40, 9907 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Krishnan, A.S.M.A. Haseeb, M.R. Johan, J. Nanopart. Res. 15, 1410 (2013)CrossRefGoogle Scholar
  28. 28.
    P. Zeng, S. Zajac, P.C. Clapp, J.A. Rifkin, Mater. Sci. Eng. A 252, 301 (1998)CrossRefGoogle Scholar
  29. 29.
    J.K. Mackenzie, R. Shuttleworth, Proc. Phys. Soc. B 62, 833 (1949)CrossRefGoogle Scholar
  30. 30.
    P. Song, D. Wen, J. Nanopart. Res. 12, 823 (2010)CrossRefGoogle Scholar
  31. 31.
    J.C. Wang, Metall. Trans. A 21, 305 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Choong-Jae Lee
    • 1
  • Kwang-Ho Jung
    • 1
  • Bum-Geun Park
    • 2
  • Yongil Kim
    • 1
  • Seung-Boo Jung
    • 1
    Email author
  1. 1.School of Advanced Materials Science & EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
  2. 2.SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations