Advertisement

Synthesis of n-doped mesoporous carbon by silica assistance as electrode for supercapacitor

  • Meng Liu
  • Lei Liu
  • Yixin Zhang
  • Yifeng Yu
  • Aibing Chen
Review
  • 3 Downloads

Abstract

We developed a simple approach to synthesize N-doped mesoporous carbon (NMC) material by using silica assistance. Hexamethylenetetramine is converted into formaldehyde and ammonia under hydrothermal conditions, which served as carbon and nitrogen source at the same time. Carbon precursor was formed by self-polymerization of formaldehyde in alkaline condition and nitrogen was in-situ introduced. Silica hydrolyzed from tetraethyl orthosilicate and carbon precursor form resin–silica composite first, which transformed into NMC after carbonization and removal of silica. As a result, the obtained NMC exhibited rich porous structure and specific surface area (569 m2 g−1). As the electrode material, NMC exhibited a specific capacitance (192 F g−1 at the current density of 0.5 A g−1) and good cycling stability (92.9% even after 5000 cycles at 5 A g−1).

Notes

Acknowledgements

We thank the National Natural Science Foundation of China (Grant No. 21676070), Hebei Natural Science Foundation (Grant No. B2015208109), Hebei Training Program for Talent Project (Grant No. A201500117), Hebei One Hundred-Excellent Innovative Talent Program (III) (Grant No. SLRC2017034), Hebei Science and Technology Project (Grant Nos. 17214304D, 16214510D), Beijing National Laboratory for Molecular Sciences.

References

  1. 1.
    A.J. Amali, J.K. Sun, Q. Xu, Chem. Commun. 50, 1519 (2014)CrossRefGoogle Scholar
  2. 2.
    W. Chaikittisilp, M. Hu, H.J. Wang, H.S. Huang, T. Fujita, K.C.W. Wu, L.C. Chen, Y. Yamauchi, K. Ariga, Chem. Commun. 48, 7259 (2012)CrossRefGoogle Scholar
  3. 3.
    M. Oh, C.A. Mirkin, Nature 438, 651 (2005)CrossRefGoogle Scholar
  4. 4.
    J. Lee, J. Kim, T. Hyeon, Adv. Mater. 18, 2073 (2006)CrossRefGoogle Scholar
  5. 5.
    A.A. Deshmukh, S.D. Mhlanga, N.J. Coville, Mater. Sci. Eng. R 70, 1 (2010)CrossRefGoogle Scholar
  6. 6.
    A. Nieto-Márquez, R. Romero, A. Romeroa, J.L. Valverde, J. Mater. Chem. 21, 1664 (2011)CrossRefGoogle Scholar
  7. 7.
    A.H. Lu, G.P. Hao, Q. Sun, X.Q. Zhang, W.C. Li, Macromol. Chem. Phys. 213, 1107 (2012)CrossRefGoogle Scholar
  8. 8.
    J.H. Hou, T. Cao, F. Idrees, C.B. Cao, Nanoscale 8, 451 (2015)CrossRefGoogle Scholar
  9. 9.
    J.S. Lee, S.I. Kim, J.C. Yoon, J.H. Jang, ACS Nano 7, 6047 (2013)CrossRefGoogle Scholar
  10. 10.
    L. Sun, C. Tian, M. Li, X. Meng, L. Wang, R. Wang, J. Yin, H. Fu, J. Mater. Chem. A 1, 6462 (2013)CrossRefGoogle Scholar
  11. 11.
    J.W. Lang, X.B. Yan, W.W. Liu, R.T. Wang, Q.J. Xue, J. Power Sources 204, 220 (2012)CrossRefGoogle Scholar
  12. 12.
    Y. Li, W. Ou-Yang, X. Xu, M. Wang, S. Hou, T. Lu, Y. Yao, L. Pan, Electrochim. Acta 271, 591 (2018)CrossRefGoogle Scholar
  13. 13.
    J. Du, L. Liu, Z. Hu, Y. Yu, Y. Zhang, S. Hou, A. Chen, ACS Sustain. Chem. Eng. 6, 4008 (2018)CrossRefGoogle Scholar
  14. 14.
    Y.Y. Wang, Y.F. Yu, G. Li, L. Liu, H.L. Zhang, G.X. Wang, A.B. Chen, J. Alloys Compd. 719, 438 (2017)CrossRefGoogle Scholar
  15. 15.
    T. Yang, J. Liu, R.F. Zhou, Z.G. Chen, H.Y. Xu, S.Z. Qiao, M.J. Monteiro, J. Mater. Chem. A 2, 18139 (2014)CrossRefGoogle Scholar
  16. 16.
    X.C. Chen, K. Kierzek, Z.W. Jiang, H.M. Chen, T. Tang, M. Wojtoniszak, R.J. Kalenczuk, P.K. Chu, E. Borowiak-Palen, J. Phys. Chem. C 115, 17717 (2011)CrossRefGoogle Scholar
  17. 17.
    S.J. Li, A. Pasc, V. Fierro, A. Celzard, J. Mater. Chem. A 4, 12686 (2016)CrossRefGoogle Scholar
  18. 18.
    B.Y. Guan, X. Wang, Y. Xiao, Y.L. Liu, Q.S. Huo, Nanoscale 5, 2469 (2013)CrossRefGoogle Scholar
  19. 19.
    Y. Fang, D. Gu, Y. Zou, Z.X. Wu, F.Y. Li, R.C. Che, Y.H. Deng, D.Y. Zhao, Angew. Chem. Int. Ed. 49, 7987 (2010)CrossRefGoogle Scholar
  20. 20.
    L.F. Chen, X.D. Zhang, H.W. Liang, M.G. Kong, Q.F. Guan, P. Chen, Z.Y. Wu, S.H. Yu, ACS Nano 6, 7092 (2012)CrossRefGoogle Scholar
  21. 21.
    M. Inagaki, H. Konno, O. Tanaike, J. Power Sources 195, 7880 (2010)CrossRefGoogle Scholar
  22. 22.
    J.P. Han, J.Y. Xu, B. Ding, Y. Pan, H. Dou, D.R. MacFarlane, J. Mater. Chem. A 2, 5352 (2014)CrossRefGoogle Scholar
  23. 23.
    G.A. Ferrero, A.B. Fuertes, M. Sevilla, J. Mater. Chem. A 3, 2914 (2014)CrossRefGoogle Scholar
  24. 24.
    C. Liu, J. Wang, J.S. Li, R. Luo, J.Y. Shen, X.Y. Sun, W.Q. Han, L.J. Wang, ACS Appl. Mater. Interfaces 7, 18609 (2015)CrossRefGoogle Scholar
  25. 25.
    J. Wang, H. Liu, J. Diao, X. Gu, H. Wang, J. Rong, B. Zong, D.S. Su, J. Mater. Chem. A 3, 2305 (2014)CrossRefGoogle Scholar
  26. 26.
    Q. Yu, D.D. Guan, Z.C. Zhuang, J.T. Li, C.W. Shi, W. Luo, L. Zhou, D.Y. Zhao, L.Q. Mai, ChemPlusChem 82, 872 (2017)CrossRefGoogle Scholar
  27. 27.
    F. Xu, R.J. Cai, Q.C. Zeng, C. Zou, D.C. Wu, F. Li, X. Lu, Y.R. Liang, R.W. Fu, J. Mater. Chem. 21 1970 (2011)CrossRefGoogle Scholar
  28. 28.
    Y.Y. Li, Z.S. Li, P.K. Shen, Adv. Mater. 25, 2474 (2013)CrossRefGoogle Scholar
  29. 29.
    J. Yu, M. Guo, F. Muhammad, A. Wang, F. Zhang, Q. Li, G. Zhu, Carbon 69, 502 (2014)CrossRefGoogle Scholar
  30. 30.
    D. Bhattacharjya, H.Y. Park, M.S. Kim, H.S. Choi, S.N. Inamdar, J.S. Yu, Langmuir 30, 318 (2014)CrossRefGoogle Scholar
  31. 31.
    P.X. Han, Y.H. Yue, L.X. Zhang, H.X. Xu, Z.H. Liu, K.J. Zhang, C.J. Zhang, S.M. Dong, W. Ma, G.L. Cui, Carbon 50, 1355 (2012)CrossRefGoogle Scholar
  32. 32.
    X.Y. Chen, C. Chen, Z.J. Zhang, D.H. Xie, X. Deng, J.W. Liu, J. Power Sources 230, 50 (2013)CrossRefGoogle Scholar
  33. 33.
    Q. Zhang, K.H. Han, S.J. Li, M. Li, J.X. Lia, K. Ren, Nanoscale 10, 2427 (2017)CrossRefGoogle Scholar
  34. 34.
    J.J. Langer, S. Golczak, Polym. Degrad. Stabil. 92, 330 (2007)CrossRefGoogle Scholar
  35. 35.
    J. Hou, C. Cao, F. Idrees, X. Ma, ACS Nano 9, 2556 (2015)CrossRefGoogle Scholar
  36. 36.
    W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Energy Environ. Sci. 7, 379 (2013)CrossRefGoogle Scholar
  37. 37.
    A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)CrossRefGoogle Scholar
  38. 38.
    C. Chen, D. Yu, G. Zhao, B. Du, W. Tang, L. Sun, Y. Sun, F. Besenbacher, M. Yu, Nano Energy 27, 377 (2016)CrossRefGoogle Scholar
  39. 39.
    J. Wang, L. Shen, P. Nie, X. Yun, Y. Xu, H. Dou, X. Zhang, J. Mater. Chem. A 3, 2853 (2015)CrossRefGoogle Scholar
  40. 40.
    B. You, J.H. Jiang, S.J. Fan, ACS Appl. Mater. Interfaces 6, 15302 (2014)CrossRefGoogle Scholar
  41. 41.
    Z.J. Fan, Y. Liu, J. Yan, G.Q. Ning, Q. Wang, T. Wei, L.J. Zhi, F. Wei, Adv. Energy Mater. 2, 419 (2012)CrossRefGoogle Scholar
  42. 42.
    M. Li, J. Ding, J.M. Xue, J. Mater. Chem. A 1, 7469 (2013)CrossRefGoogle Scholar
  43. 43.
    N. Zhang, F. Liu, S.D. Xu, F.Y. Wang, Q. Yu, L. Liu, J. Mater. Chem. A 5, 22631 (2017)CrossRefGoogle Scholar
  44. 44.
    X.C. Chen, K. Kierzek, K. Cendrowski, I. Pelech, X. Zhao, J.D. Feng, R.J. Kalenczuk, T. Tang, E. Mijowska, Colloids Surf. A 396, 246 (2012)CrossRefGoogle Scholar
  45. 45.
    R.L. Liu, L. Wan, S.Q. Liu, L.X. Pan, D.Q. Wu, D.Y. Zhao, Adv. Funct. Mater. 25, 526 (2015)CrossRefGoogle Scholar
  46. 46.
    H.X. Yu, Q. Zhang, J.B. Joo, N. Li, G.D. Moon, S.Y. Tao, L.J. Wang, Y.D. Yin, J. Mater. Chem. A 1, 12198 (2013)CrossRefGoogle Scholar
  47. 47.
    D. Carriazo, F. Picó, M.C. Gutiérrez, F. Rubio, J.M. Rojo, F. del Monte, J. Mater. Chem. 20, 773 (2010)CrossRefGoogle Scholar
  48. 48.
    T. Fan, W. Zeng, Q. Niu, S. Tong, K. Cai, Y. Liu, W. Huang, Y. Min, A.J. Epstein, Nanoscale Res. Lett. 10, 192 (2015)CrossRefGoogle Scholar
  49. 49.
    J.W. Lee, J.M. Ko, J.D. Kim, Electrochim. Acta 85, 459 (2012)CrossRefGoogle Scholar
  50. 50.
    G. Wang, K. Liang, L. Liu, Y. Yu, S. Hou, A. Chen, J. Alloys Compd. 736, 35 (2018)CrossRefGoogle Scholar
  51. 51.
    Y.K. Zhou, B.L. He, F.B. Zhang, H.L. Li, J. Solid State Eletrochem. 8, 482 (2004)CrossRefGoogle Scholar
  52. 52.
    J. Yang, H.L. Wu, M. Zhu, W.J. Ren, Y. Lin, H.B. Chen, F. Pan, J. Mater. Chem. A 1, 12198 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuangChina

Personalised recommendations