Lanthanum modified BFO–BT solid solutions: a structural, electrical and magnetic study

  • C. BeheraEmail author
  • R. N. P. Choudhary
  • Saroj K. Parida


In this paper, structural, electrical and magnetic characteristics of Lanthanum-modified multiple perovskite BiFeO3–BaTiO3(BFO–BT) solid solutions have been reported. Detailed structural analysis via Rietveld refinement technique using X-ray diffraction pattern provides the evolution of a mono-phase distorted perovskite structure with the concurrence of rhombohedral structure. Scanning electron micrograph of La modified BFO–BT solid solutions at ambient temperature exhibits that with varying La content in the material, more symmetric structure, high density and uniform grain distribution are obtained. The dielectric parameters are strongly depends on composition, frequency and temperature. The well defined polarization–electric field hysteresis loop of the samples at room temperature suggests that La substitution at the Bi site of the solid solutions strongly affects remnant and saturated polarization of the materials. The low lanthanum concentration in the solid solutions is able to provide a well-defined ferromagnetic characteristic with saturation magnetization (Ms) in the range of 6–9 emu/g and remnant magnetization(Mr) 1.5–2 emu/g and shows that BT substitution in BFO releases latent magnetization whereas addition of higher content of barium titanate shows an anti-ferromagnetic behaviour which has been confirmed by M-H hysteresis loop and Arrot plots. Based on the derived parameters of La modified solid solution, it is expected to fabricate a multifunctional device.



Author (CB) is gratefully acknowledged the grant received from SERB, DST, Govt. of India (PDF/2016/001078 dated 26th July.2016) to carry out the research work and CRF,IIT Kharagpur for SEM and SQUID facility.


  1. 1.
    M. Lorenz, D. Hirsch, C. Patzig, T. Höche, S. Hohenberger, H. Hochmuth, V. Lazenka, K. Temst, M. Grundmann, ACS Appl. Mater. Interfaces 9, 18956–18965 (2017)CrossRefGoogle Scholar
  2. 2.
    Y. Guo, P. Xiao, R. Wen, Y. Wan, Q. Zheng, D. Shi, K. Ho Lam, M. Liu, D. Lin, J. Mater. Chem. C 3, 5811 (2015)CrossRefGoogle Scholar
  3. 3.
    C.S. Tu, R.R. Chien, T.-H. Wang, J. Anthoninappen, Y.-T. Peng, J. Appl. Phys. 113, 17D908 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Kim, G.P. Khanal, H.-W. Nam, I. Fujii, S. Ueno, C. Moriyoshi, Y. Kuroiwa, S. Wada, J. Appl. Phys. 122, 164105 (2017)CrossRefGoogle Scholar
  5. 5.
    W. Gao, J. Lv, X. Lou, J. Am. Ceram. Soc. 101, 3383–3392 (2018)CrossRefGoogle Scholar
  6. 6.
    S. Jangra, S. Sanghi, A. Agarwal, M. Rangi, K. Kaswan, Ceram. Int., 44, 7683–7693(2018)CrossRefGoogle Scholar
  7. 7.
    Y. Wei, X. Wang, J. Zhu, X. Wang, J. Jia, J. Am. Ceram. Soc. 96, 3163 (2013)Google Scholar
  8. 8.
    J. Zhuang, J. Zhao, L.-W. Su, H. Wu, A.A. Bokov, W. Ren, Z.-G. Ye, J. Mater. Chem. C 3, 12450–12456 (2015)CrossRefGoogle Scholar
  9. 9.
    S. Murakami, N. Thafeem, A. Faheem Ahmed, D. Wang, A. Feteira, D.C. Sinclair, I.M. Reaney, J. Eur. Ceram. Soc. 38, 4220–4231 (2018)CrossRefGoogle Scholar
  10. 10.
    W. Dong, Y.P. Guo, B. Guo, H.Y. Liu, H. Li, H.Z. Liu, Mater. Lett. 91, 359 (2013)CrossRefGoogle Scholar
  11. 11.
    X.J. Xi, S.Y. Wang, W.F. Liu, H.J. Wang, F. Guo, X. Wang, J. Gao, D.J. Li, J. Magn. Magn. Mater. 355, 259 (2014)CrossRefGoogle Scholar
  12. 12.
    Z. Jia, X. Wu, M. Zhang, J.J. Liou, Ferroelectrics 504, 172–179 (2016)CrossRefGoogle Scholar
  13. 13.
    A. Ahlawat, S. Satapathy, R.J. Choudhary, M.K. Singh, P.K. Gupta, Mater. Lett. 181, 123–126 (2016)CrossRefGoogle Scholar
  14. 14.
    S.N. Das, S.K. Pradhan, S. Bhuyan,, J. Mater. Sci.: Mater. Electron. 28, 18913 (2017)Google Scholar
  15. 15.
    T. Zheng, J. Wu, Quenched bismuth ferrite-barium titanate lead-free piezoelectric ceramics. J. Alloys Compd. 676, 505–512 (2016)CrossRefGoogle Scholar
  16. 16.
    S. Unruan, M. Unruan, T. Monnar, S. Priya, R. Yimnirun, J. Am. Ceram. Soc. 98, 3291 (2015)CrossRefGoogle Scholar
  17. 17.
    H.L. Zhang, W. Jo, K. Wang, K.G. Webber, Ceram. Int. 40, 4759 (2014)CrossRefGoogle Scholar
  18. 18.
    T.H. Wang, C.S. Tu, Y. Ding, T.C. Lin, C.S. Ku, W.C. Yang, H.H. Yu, K.T. Wu, Y.D. Yao, H.Y. Lee, Curr. Appl. Phys. 11, S240–S243 (2011)CrossRefGoogle Scholar
  19. 19.
    T.J. Park, G.C. Papaefthymiou, A.J. Viescas, Y. Lee, H. Zhou, S.S. Wong, Phys. Rev. B 82, 024431 (2010)CrossRefGoogle Scholar
  20. 20.
    R.A.M. Gotardo, D.S.F. Viana, M. Olzon-Dionysio, S.D. Souza, D. Garcia, J.A. Eiras, M.F.S. Alves, L.F. Cotica, I.A. Santos, A.A. Coelho, J. Appl. Phys. 112, 104112 (2012)CrossRefGoogle Scholar
  21. 21.
    Y.T. Peng, S.H. Chiou, C.H. Hsiao, C. Ouyang, C. Tu, Sci. Rep. 7, 45164 (2017)CrossRefGoogle Scholar
  22. 22.
    T. Zheng, J. Wu, J. Mater. Chem. C 3, 3684 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Sharma, V. Singh, A. Anshul, J.M. Siqueiros, R.K. Dwivedi, J. Appl. Phys. 123(20), 204102 (2018)CrossRefGoogle Scholar
  24. 24.
    C. Behera, R.N.P. Choudhary, P.R. Das, J. Mater. Sci.: Mater. Electron. 25, 2086 (2014)Google Scholar
  25. 25.
    M. Shariq, D. Kaur, V.S. Chandel, Chin. J. Phys. 55, 2192–2198 (2017)CrossRefGoogle Scholar
  26. 26.
    M.H. Lee, D.J. Kim, J.S. Park, M.-H. Kim, T.K. Song, S. Kumar, W.J. Kim, D. Do, I. Hwang, B.H. Park, K.S. Choi, Curr. Appl. Phys. 16, 1449–1452 (2016)CrossRefGoogle Scholar
  27. 27.
    X. Qi, M. Zhang, X. Zhang, Y. Gu, H. Zhu, W. Yanga, Y. Lia, RSC Adv. 7, 51801 (2017)CrossRefGoogle Scholar
  28. 28.
    J. Wu, Z. Fan, D. Xiao, J. Zhu, J. Wang, Prog. Mater. Sci. 84, 335–402 (2016)CrossRefGoogle Scholar
  29. 29.
    T.H. Wang, C.S. Tu, H.Y. Chen, Y. Ding, T.C. Lin, Y.D. Yao, V.H. Schmidt, K.T. Wu, J. Appl. Phys. 109, 044101 (2011)CrossRefGoogle Scholar
  30. 30.
    E. Wu, POWD, School of Physical Sciences, Flinders University South Bedford Park, SA 5042 AustraliaGoogle Scholar
  31. 31.
    M.W. Lufaso, T.A. Vanderach, M. Pazos, I. Levin, R.S. Roth, J.C. Nio, V. Provenzano, P.K. Schenck, J. Solid State Chem. 179, 3900 (2006)CrossRefGoogle Scholar
  32. 32.
    J.R. Cheng, L.E. Cross, J. Appl. Phys. 94, 5188 (2003)CrossRefGoogle Scholar
  33. 33.
    T. Leist, K.G. Webber, W. Jo, T. Granzow, E. Aulbach, J. Suffner, J. Rödel, J. Appl. Phys. 109, 054109 (2011)CrossRefGoogle Scholar
  34. 34.
    L. Zivkovie, V. Paunovie, M. Milijkovie, M.M. Ristic, Mat. Sci. Forum 518, 229 (2006)CrossRefGoogle Scholar
  35. 35.
    C. Behera, R.N.P. Choudhary, P.R. Das, Struct. Mater. Res. Exp. 5, 056301 (2018)CrossRefGoogle Scholar
  36. 36.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)CrossRefGoogle Scholar
  37. 37.
    V.I. Gibalov, G.J. Pietsch, Plasma Sources Sci. Technol. 21, 024010 (2012)CrossRefGoogle Scholar
  38. 38.
    R. Ahmed Malik, A. Zaman, A. Hussain, A. Maqbool, T.K. Song, W.J. Kim, Y.S. Sung, M.H. Kim, J. Eur. Ceram. Soc. 38, 2259–2263 (2018)CrossRefGoogle Scholar
  39. 39.
    Z. Cen, C. Zhou, H. Yang, Q. Zhou, W. Li, C. Yan, L. Cao, J. Song, L. Peng, J. Am. Ceram. Soc. 96, 2252 (2013)CrossRefGoogle Scholar
  40. 40.
    A. Chen, Y. Zhi, L.E. Cross, Phys. Rev. B 62, 228 (2000)CrossRefGoogle Scholar
  41. 41.
    J.E. Garcia, V. Gomis, R. Perez, A. Albareda, J.A. Eiran, Appl. Phys. Lett. 91, 0429021 (2007)Google Scholar
  42. 42.
    Z. Dai, Y. Akishige, J. Phys. D 43, 445403 (2010)CrossRefGoogle Scholar
  43. 43.
    L. Bellaiche, A. Garcı´a, D. Vanderbilt, Phys. Rev. B 64, 060103 (2001)CrossRefGoogle Scholar
  44. 44.
    K.S. Kumar, C. Venkateswar, D. Kannan, B. Tiwari, M.S.R. Rao, J. Phys. D 45, 415302 (2012)CrossRefGoogle Scholar
  45. 45.
    S. Shankar, Brijmohan, S. Kumar, O.P. Thakur, A.K. Ghosh, Phys. Lett. A 381, 379–386 (2017)CrossRefGoogle Scholar
  46. 46.
    S.K. Singh Patel, J.H. Lee, M.-K. Kim, B. Bhoi, S.-K. Kim, J. Mater. Chem. C 6(3), 526 (2018)CrossRefGoogle Scholar
  47. 47.
    S. Chandarak, M. Unruan, T. Sareein, A. Ngamjarurojana, S. Maensiri, P. Laoratanakul, S. Ananta, R. Yimnirun, J. Magn. 14, 120 (2009)CrossRefGoogle Scholar
  48. 48.
    R. Cohen, Nature 358, 136 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • C. Behera
    • 1
    Email author
  • R. N. P. Choudhary
    • 2
  • Saroj K. Parida
    • 1
  1. 1.Department of PhysicsNational Institute of TechnologyAgartalaIndia
  2. 2.Department of PhysicsSiksha’O’Anusandhan, Deemed to be UniversityBhubaneswarIndia

Personalised recommendations