Microwave dielectric properties and microstructures of xBa0.33Sr0.67TiO3–(1−x)Ba4Sm9.33Ti18O54 ceramics with near-zero temperature coefficient

  • Wentao XieEmail author
  • Xiaoying Zhang
  • Huachao Hang
  • Qinxian Jiang
  • Qinglin Cao
  • Jinyu Zhou


The phase composition, microstructures, sintering behavior, and microwave dielectric properties of Ba0.33Sr0.67TiO3–Ba4Sm9.33Ti18O54 ceramics prepared via conventional solid-state route were systematically investigated as a function of the Ba0.33Sr0.67TiO3 molar fraction and sintering temperature. All the sintered ceramics only exhibited a single orthorhombic tungsten bronze structure BaSm2Ti4O12 phase. And all samples sintered at 1400 °C showed fully dense and homogeneous microstructures. The variation of bulk density and dielectric properties are related with the Ba(Zn1/3Nb2/3)O3 molar fraction, but not with a same trend. As Ba ions in A1 sites are substituted by Sr ions, Q × f values enhanced dramatically. The optimum microwave dielectric properties with an εr value of 80.13, a Q × f value of 11386 GHz (at 3.5 GHz), and a τf value of − 0.34 ppm/°C were obtained for 0.03Ba0.33Sr0.67TiO3–0.97Ba4Sm9.33Ti18O54 ceramics sintered at 1400 °C for 4 h.



The authors are grateful to the support of Program for Advanced Research and Key Technology in Industry of Jiangsu Province (Grant No. BE2015007-1), the Talent Introduction Project of Jiangsu University of Technology (Grant No. KYY16030), the National Natural Science Foundation (Grant No. 51475219), the National Science and Technology Major Project (Grant No. 2018ZX04026001-008), and Major project of natural science research in universities of Jiangsu: Research on key technology of material/structure integrated design of CFRP car body (Grant No. 16KJA460002).


  1. 1.
    A.K. Tyagi. Synthesis and characterization of ceramic dielectric resonator materials for microwave communication technology. Proced. Mater. Sci. 5 (2014) 1322–1331CrossRefGoogle Scholar
  2. 2.
    I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063–2072 (2006)Google Scholar
  3. 3.
    C.H. Su, Y.S. Wang, C.L. Huang, Characterization and microwave dielectric properties of Mg2YVO6 ceramic. J. Alloys Compd. 641, 93–98 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Xu, R. Fu, S. Agathopoulos et al., Sintering behavior, microstructure, and microwave dielectric properties of Ca0.66Ti0.66Sm0.34Al0.34O3 ceramics. Ceram. Int. 42, 19036–19041 (2016)CrossRefGoogle Scholar
  5. 5.
    Z. Fang, B. Tang, F. Si et al., Temperature stable and high-Q microwave dielectric ceramics in the Li2Mg3 – xCaxTiO6 system (x = 0.00-0.18). Ceram. Int. 43, 1682–1687 (2017)CrossRefGoogle Scholar
  6. 6.
    X.S. Lv, L.X. Li, H. Sun et al., Microwave dielectric properties of novel temperature stable high Q MgZr1 + xNb2O8 + 2x ceramics. Ceram. Int. 41, 15287–15291 (2015)CrossRefGoogle Scholar
  7. 7.
    H. Ohsato, Science of tungstenbronze-type like Ba6 – 3xR8+2xTi18O54 (R = rare earth) microwave dielectric solid solutions. J. Eur. Ceram. Soc. 21, 2703–2711 (2001)CrossRefGoogle Scholar
  8. 8.
    M. Valant, D. Suvorov, C. J. Rawn. Intrinsic reasons for variations in dielectric properties of Ba6 – 3xR8+2xTi18O54 (R = La-Gd) solid solutions. Jpn. J. Appl. Phys. 38, 2820–2826 (1999)CrossRefGoogle Scholar
  9. 9.
    H. Ohsato, T. Ohhashi, S. Nishigaki, T. Okuda, K. Sumiya, S. Suzuki, Formation of solid solution of new tungsten bronze-type microwave dielectric compounds Ba6 – 3xR8+2xTi18O54 (R = Nd and Sm, 0 ≤ x ≤ 1). Jpn. J. Appl. Phys. 32, 4323–4326 (1993)CrossRefGoogle Scholar
  10. 10.
    X. Wang, J. Luo, H. Guan et al., Effects of CaO additives on the structure and properties of Ba6 – 3xSm8+2xTi18O54 (x = 0.5) ceramics. J. Mater. Sci.: Mater. Electron. 28, 10338–10342 (2017)Google Scholar
  11. 11.
    X. Huang, X. Liu, F. Liu et al., Microstructures and microwave dielectric properties of (Ba1-xSrx)4(Sm0.4Nd0.6)28/3Ti18O54 solid solutions. J. Adv. Ceram. 6, 50–58 (2017)CrossRefGoogle Scholar
  12. 12.
    L.L. Zhou, H.Q. Zhou, H. Shao et al., Microstructure and microwave dielectric properties of Ba6 – 3xSm8+2xTi18O54 ceramics with various BaxSr1–xTiO3 additions. J. Rare Earths 30, 142–145 (2012)CrossRefGoogle Scholar
  13. 13.
    J.H. Zhu, W.Z. Lu, W. Lei, S. Wan, Effects of SrTiO3 additives on the structure and microwave dielectric properties of Ba4.2Sm9.2Ti18O54 ceramics. Ceram. Int. 35, 855–860 (2009)CrossRefGoogle Scholar
  14. 14.
    M. Suzuki, H. Ohsato, K. Kakimoto et al., Crystal structure and microwave dielectric properties of (Ba1 – αSrα)6–3xSm8+2xTi18O54 solid solutions. J. Eur. Ceram. Soc. 26, 2035–2038 (2006)CrossRefGoogle Scholar
  15. 15.
    B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microwav. Theory Tech. 8, 402–410 (1960)CrossRefGoogle Scholar
  16. 16.
    W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microw. Theory Tech. 18, 476–485 (1970)CrossRefGoogle Scholar
  17. 17.
    C.E. Huang, X. Lu, M. Lu et al., Effect of CaO/SnO2 additives on the microstructure and microwave dielectric properties of SrTiO3–LaAlO3 ceramics. Ceram. Int. 43, 10624–10627 (2017)CrossRefGoogle Scholar
  18. 18.
    X. Wang, R. Fu, Y. Xu, Crystal structure and microwave dielectric properties of (Ba1 – αSrα)Sm2Ti4O12 solid solutions. J. Mater. Sci.: Mater. Electron. 27, 11137–11141 (2016)Google Scholar
  19. 19.
    T.A. Vanderah, Talking ceramics. Science 298 1182–1184 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Wentao Xie
    • 1
    Email author
  • Xiaoying Zhang
    • 1
  • Huachao Hang
    • 2
  • Qinxian Jiang
    • 1
  • Qinglin Cao
    • 1
  • Jinyu Zhou
    • 1
  1. 1.School of Mechanical EngineeringJiangsu University of TechnologyChangzhouChina
  2. 2.DK Electronic Materials Co.,LtdYixingChina

Personalised recommendations