Advertisement

Ferromagnetism in Cu2+ doped ZnO nanoparticles and their physical properties

  • Pallavi G. Undre
  • Prashant B. Kharat
  • R. V. Kathare
  • K. M. JadhavEmail author
Article
  • 37 Downloads

Abstract

Cu2+ doped ZnO nanoparticles designated as Zn1−xCuxO (x = 0.00, 0.02, 0.04, 0.06, 0.08 and 0.10) were prepared by sol–gel auto combustion technique. The modifications in structure, morphology, band gap, electrical, dielectric and magnetic properties due to Cu2+ doping were investigated through XRD, FE-SEM/EDAX, TEM/SAED, Raman, FT-IR, UV–Vis and VSM respectively. The analysis of XRD pattern reveals the incorporation of the dopants Cu2+ into ZnO lattice. The XRD spectra show that all the synthesized nanoparticles are a single crystalline phase with hexagonal wurtzite structure. The analysis of FE-SEM indicates that Cu2+ doping affects the surface morphology of ZnO. The compositional study performed by EDAX confirmed the presence of Zn, O, and Cu in stoichiometric proportion. TEM micrographs show the spherical shape of nanocrystals with small agglomeration. SAED patterns confirm the crystalline nature with hexagonal wurtzite structure. Raman spectra show the strongest peak at 437 cm−1 related to vibration of oxygen atoms in ZnO and also confirms optical phonon modes. FTIR result confirms the successful accompanying of Cu2+ ions into ZnO crystal lattice without changing its original structure. From DC electrical resistivity measurements it was found that electrical resistivity enhanced with increase in Cu2+ content. The measured dielectric parameters decreased with increase in Cu2+ content. An optical study revealed that the energy band gap decreased with doping of Cu2+ ions into ZnO nanoparticles. The VSM analysis shows the transformation of paramagnetic to superparamagnetic and superparamgnetic to ferromagnetic at room temperature due to Cu2+ doping in ZnO nanoparticles. The enhanced physical properties revealed that the prepared Cu2+ doped ZnO nanoparticles are the potential candidate for high-frequency devices, optoelectronic devices and spintronics devices application.

Notes

Acknowledgements

One of the authors (PGU) is thankful to UGC-DAE Consortium for Scientific Research for providing TEM and VSM facility.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, M. Mehrzad, J. Mater. Sci. Mater. Electron. 27, 5758–5763 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, J. Mater. Sci. Mater. Electron. 26, 9776–9781 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, J. Mater. Sci. Mater. Electron. 27, 11691–11697 (2016)CrossRefGoogle Scholar
  4. 4.
    W. Lee, Y.S. Lim, S. Kim, J. Jung, Y.-K. Han, S. Yoon, L. Piao, S.-H. Kim, J. Mater. Chem. 21, 6928–6933 (2011)CrossRefGoogle Scholar
  5. 5.
    M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Angew. Chem. 119, 764–767 (2007)CrossRefGoogle Scholar
  6. 6.
    A. Jaroenworaluck, W. Sunsaneeyametha, N. Kosachan, R. Stevens, Surf. Interface Anal. 38, 473–477 (2006)CrossRefGoogle Scholar
  7. 7.
    R. Saravanan, K. Santhi, N. Sivakumar, V. Narayanan, A. Stephen, Mater. Charact. 67, 10–16 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Javidan, M. Ramezani, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, J. Mater. Sci. Mater. Electron. 26, 3813–3818 (2015)CrossRefGoogle Scholar
  9. 9.
    M. Mansournia, S. Rafizadeh, S.M. Hosseinpour-Mashkani, Ceram. Int. 42, 907–916 (2016)CrossRefGoogle Scholar
  10. 10.
    C.B. Ong, L.Y. Ng, A.W. Mohammad, Renew. Sustain. Energy Rev. 81, 536–551 (2018)CrossRefGoogle Scholar
  11. 11.
    N.A. Hammed, A.A. Aziz, A.I. Usman, M. Qaeed, Ultrason. Sonochem. 50, 172–181 (2019)CrossRefGoogle Scholar
  12. 12.
    M. Arshad, A. Azam, A.S. Ahmed, S. Mollah, A.H. Naqvi, J Alloys Compd. 509, 8378–8381 (2011)CrossRefGoogle Scholar
  13. 13.
    S. Kant, A. Kumar, Adv. Mater. Lett. 3, 350–354 (2012)CrossRefGoogle Scholar
  14. 14.
    B. Straumal, B. Baretzky, A. Mazilkin, S. Protasova, A. Myatiev, Straumal P., J. Eur. Ceram. Soc. 29, 1963–1970 (2009)CrossRefGoogle Scholar
  15. 15.
    M.M. Hassan, W. Khan, A. Azam, A. Naqvi, J. Lumin. 145, 160–166 (2014)CrossRefGoogle Scholar
  16. 16.
    Z. Zhang, J.B. Yi, J. Ding, L.M. Wong, H.L. Seng, S.J. Wang, J.G. Tao, G.P. Li, G.Z. Xing, T.C. Sum, J. Phys. Chem. C 112, 9579–9585 (2008)CrossRefGoogle Scholar
  17. 17.
    N. Kouklin, Adv. Mater. 20, 2190–2194 (2008)CrossRefGoogle Scholar
  18. 18.
    B.K. Das, T. Das, K. Parashar, A. Thirumurugan, S. Parashar, J. Mater. Sci. Mater. Electron. 28, 15127–15134 (2017)CrossRefGoogle Scholar
  19. 19.
    K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, Physica B 537, 167–175 (2018)CrossRefGoogle Scholar
  20. 20.
    V. Vaiano, G. Iervolino, L. Rizzo, Appl. Catal. B 238, 471–479 (2018)CrossRefGoogle Scholar
  21. 21.
    R.-C. Wang, H.-Y. Lin, Mater. Chem. Phys. 125, 263–266 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Zhu, Z. Zhang, M. Zhong, M. Tariq, Y. Li, W. Li, H. Jin, K. Skotnicova, Y. Li, Ceram. Int. 43, 3166–3170 (2017)CrossRefGoogle Scholar
  23. 23.
    S. Muthukumaran, R. Gopalakrishnan, Opt. Mater. 34, 1946–1953 (2012)CrossRefGoogle Scholar
  24. 24.
    P. Dhamodharan, R. Gobi, N. Shanmugam, N. Kannadasan, R. Poonguzhali, S. Ramya, Spectrochim. Acta A 131, 125–131 (2014)CrossRefGoogle Scholar
  25. 25.
    Z.-P. Sun, L. Liu, L. Zhang, D.-Z. Jia, Nanotechnology 17, 2266 (2006)CrossRefGoogle Scholar
  26. 26.
    R. Kripal, A.K. Gupta, R.K. Srivastava, S.K. Mishra, Spectrochim. Acta A 79, 1605–1612 (2011)CrossRefGoogle Scholar
  27. 27.
    A.N.P. Madathil, K. Vanaja, M. Jayaraj, Nanophotonic Materials IV (International Society for Optics and Photonics, San Diego, 2007), p. 66390JGoogle Scholar
  28. 28.
    A.K. Zak, M.E. Abrishami, W.A. Majid, R. Yousefi, S. Hosseini, Ceram. Int. 37, 393–398 (2011)CrossRefGoogle Scholar
  29. 29.
    S.M. Hosseinpour-Mashkani, M. Ramezani, Mater. Lett. 130, 259–262 (2014)CrossRefGoogle Scholar
  30. 30.
    A. Sobhani-Nasab, M. Maddahfar, S.M. Hosseinpour-Mashkani, J. Mol. Liq. 216, 1–5 (2016)CrossRefGoogle Scholar
  31. 31.
    S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 27, 474–480 (2016)CrossRefGoogle Scholar
  32. 32.
    H. Mirzaei, M. Darroudi, Ceram. Int. 43, 907–914 (2017)CrossRefGoogle Scholar
  33. 33.
    M. Vafaee, M.S. Ghamsari, Mater. Lett. 61, 3265–3268 (2007)CrossRefGoogle Scholar
  34. 34.
    A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Res. Chem. Intermed. 43, 6155–6165 (2017)CrossRefGoogle Scholar
  35. 35.
    L. Shen, N. Bao, K. Yanagisawa, K. Domen, C.A. Grimes, A. Gupta, J. Phys. Chem. C 111, 7280–7287 (2007)CrossRefGoogle Scholar
  36. 36.
    D. Raoufi, J. Lumin. 134, 213–219 (2013)CrossRefGoogle Scholar
  37. 37.
    R. Elilarassi, P.S. Rao, G. Chandrasekaran, J. Sol-Gel Sci. Technol. 57, 101–108 (2011)CrossRefGoogle Scholar
  38. 38.
    K. Raja, P. Ramesh, D. Geetha, Spectrochim. Acta A 131, 183–188 (2014)CrossRefGoogle Scholar
  39. 39.
    A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, J. Rare Earth 35, 374–381 (2017)CrossRefGoogle Scholar
  40. 40.
    L.-H. Ye, A. Freeman, B. Delley, Phys. Rev. B 73, 033203 (2006)CrossRefGoogle Scholar
  41. 41.
    K. Raja, P.S. Ramesh, D. Geetha, Spectrochim. Acta A 120, 19–24 (2014)CrossRefGoogle Scholar
  42. 42.
    D. Theyvaraju, S. Muthukumaran, Physica E 74, 93–100 (2015)CrossRefGoogle Scholar
  43. 43.
    M. Ashokkumar, S. Muthukumaran, J. Lumin. 162, 97–103 (2015)CrossRefGoogle Scholar
  44. 44.
    M. Ahmad, E. Ahmed, Y. Zhang, N. Khalid, J. Xu, M. Ullah, Z. Hong, Curr. Appl. Phys. 13, 697–704 (2013)CrossRefGoogle Scholar
  45. 45.
    S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Physica B 407, 1223–1226 (2012)CrossRefGoogle Scholar
  46. 46.
    S.D. Birajdar, P.P. Khirade, T.S. Saraf, R. Alange, K. Jadhav, J. Alloys Compd. 691, 355–363 (2017)CrossRefGoogle Scholar
  47. 47.
    J. Wang, G. Huang, X. Zhong, L. Sun, Y. Zhou, E. Liu, Appl. Phys. Lett. 88, 252502 (2006)CrossRefGoogle Scholar
  48. 48.
    P. Labhane, V. Huse, L. Patle, A. Chaudhari, G. Sonawane, J. Mater. Sci. Chem. Eng. 3, 39 (2015)Google Scholar
  49. 49.
    U. Gahlaut, V. Kumar, R. Pandey, Y. Goswami, Optik 127, 4292–4295 (2016)CrossRefGoogle Scholar
  50. 50.
    A.S. Lanje, S.J. Sharma, R.S. Ningthoujam, J.-S. Ahn, R.B. Pode, Adv. Powder Technol. 24, 331–335 (2013)CrossRefGoogle Scholar
  51. 51.
    M. Iwamoto, in Encyclopedia of Nanotechnology, ed. by B. Bhushan. Maxwell–Wagner effect (Springer, New York, 2012), pp. 1276–1285Google Scholar
  52. 52.
    I. Gul, A. Abbasi, F. Amin, M. Anis-ur-Rehman, A. Maqsood, J. Magn. Magn. Mater. 311, 494–499 (2007)CrossRefGoogle Scholar
  53. 53.
    A. Ghosh, N. Kumari, A. Bhattacharjee, Pramana 84, 621–635 (2015)CrossRefGoogle Scholar
  54. 54.
    P. Capper, S. Kasap, A. Willoughby, Zinc Oxide Materials for Electronic and Optoelectronic Device Applications (Wiley, Hoboken, 2011)Google Scholar
  55. 55.
    A.J. Reddy, M. Kokila, H. Nagabhushana, R. Chakradhar, C. Shivakumara, J. Rao, B. Nagabhushana, J Alloys Compd. 509, 5349–5355 (2011)CrossRefGoogle Scholar
  56. 56.
    K. Noipa, S. Rujirawat, R. Yimnirun, V. Promarak, S. Maensiri, Appl. Phys. A 117, 927–935 (2014)CrossRefGoogle Scholar
  57. 57.
    C. Xia, C. Hu, Y. Tian, P. Chen, B. Wan, J. Xu, Solid State Sci. 13, 388–393 (2011)CrossRefGoogle Scholar
  58. 58.
    S. Riaz, S. Naseem, Y. Xu, J. Sol-Gel Sci. Technol. 59, 584–590 (2011)CrossRefGoogle Scholar
  59. 59.
    M. El-Hilo, A. Dakhel, A. Ali-Mohamed, J. Magn. Magn. Mater. 321, 2279–2283 (2009)CrossRefGoogle Scholar
  60. 60.
    R. Elilarassi, G. Chandrasekaran, J. Mater. Sci. Mater. Electron. 21, 1168–1173 (2010)CrossRefGoogle Scholar
  61. 61.
    D. Gao, Y. Xu, Z. Zhang, H. Gao, D. Xue, J. Appl. Phys. 105, 063903 (2009)CrossRefGoogle Scholar
  62. 62.
    N. Khare, M.J. Kappers, M. Wei, M.G. Blamire, J.L. MacManus-Driscoll, Adv. Mater. 18, 1449–1452 (2006)CrossRefGoogle Scholar
  63. 63.
    T.M. Hammad, J.K. Salem, R.G. Harrison, R. Hempelmann, N.K. Hejazy, J. Mater. Sci. Mater. Electron. 24, 2846–2852 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia
  2. 2.Department of PhysicsKarmaveer Mamasaheb Jagdale MahavidyalayaOsmanabadIndia

Personalised recommendations