Electrochemical determination of levodopa in the presence of uric acid using ZnO nanoflowers-reduced graphene oxide

  • Hong Yan YueEmail author
  • Peng Fei Wu
  • Shuo Huang
  • Xin Gao
  • Zhao Wang
  • Wan Qiu Wang
  • Hong Jie Zhang
  • Shan Shan Song
  • Xin Rui Guo


ZnO nanoflowers (ZnO NFs) were prepared by hydrothermal synthesis and graphene oxide nanosheets (GO NSs) were synthesized by the Hummer’s method. Then, ZnO NFs were dispersed in GO dispersion and sprayed onto ITO-coated glass. Finally, the ZnO NFs-GO NSs/ITO was annealed to form the ZnO NFs-rGO NSs/ITO, acting as the electrode for the determination of levodopa (LD) under the interference of uric acid (UA). The results reveal that the ZnO NFs are made up of nanorods with the diameter of ∼ 150 nm and the length of ∼ 2 µm and ZnO NFs are covered by rGO NSs. The ZnO NFs-rGO NSs/ITO electrode exhibits an enhanced electrochemical response due to its excellent redox activity, which shows a high sensitivity (0.66 µA µM−1), low measured detection limit (1 µM) and excellent selectivity for determination of LD. The electrode was used to detect the LD in the actual sample of human serum for practical application, revealing satisfactory results.



This work is supported by the Natural Science Foundation of Heilongjiang Province (LC2015020), Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Personnel of China (2015192), the Innovative Talent Fund of Harbin city (2016RAQXJ185) and Science Funds for the Young Innovative Talents of HUST (201604).

Supplementary material

10854_2019_684_MOESM1_ESM.docx (308 kb)
Supplementary material 1 (DOCX 307 KB)


  1. 1.
    W.G. Ondo, Motor complications in Parkinson’s disease. Int. J. Neurosci. 121, 37–44 (2011)CrossRefGoogle Scholar
  2. 2.
    K. Dashtipour, E. Johnson, C. Kani, K. Kani, E. Hadi, M. Ghamsary et al., Effect of exercise on motor and nonmotor symptoms of Parkinson’s disease. Parkinsons Dis. 2015, 586378–586389 (2015)Google Scholar
  3. 3.
    S. Fabrizio, T. Michele, O.C. Warren, Treatment of levodopa-induced motor complications. Mov. Disord. 23, S599–S612 (2010)Google Scholar
  4. 4.
    R.A. Hawkins, A. Mokashi, I.A. Simpson, An active transport system in the blood-brain barrier may reduce levodopa availability. Exp. Neurol. 195, 267–271 (2005)CrossRefGoogle Scholar
  5. 5.
    G. Hu, C. Long, G. Yong, X. Wang, S. Shao, Selective determination of L-dopa in the presence of uric acid and ascorbic acid at a gold nanoparticle self-assembled carbon nanotube-modified pyrolytic graphite electrode. Electrochim. Acta 55, 4711–4716 (2010)CrossRefGoogle Scholar
  6. 6.
    S. Tajik, M.A. Taher, H. Beitollahi, First report for electrochemical determination of levodopa and cabergoline: application for determination of levodopa and cabergoline in human serum, urine and pharmaceutical formulations. Electroanalysis 26, 796–806 (2014)CrossRefGoogle Scholar
  7. 7.
    P. Daneshgar, P. Norouzi, M.R. Ganjali, A. Ordikhani-Seyedlar, H. Eshraghi, A dysprosium nanowire modified carbon paste electrode for determination of levodopa using fast Fourier transformation square-wave voltammetry method. Colloids Surf B 68, 27–32 (2009)CrossRefGoogle Scholar
  8. 8.
    M.A. Sheikh-Mohseni, S. Pirsa, Nanostructured conducting polymer/copper oxide as a modifier for fabrication of l-dopa and uric acid electrochemical sensor. Electroanalysis 28, 2075–2080 (2016)CrossRefGoogle Scholar
  9. 9.
    A.L. Sanati, F. Faridbod, M.R. Ganjali, Synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin. J. Mol. Liq. 241, 316–320 (2017)CrossRefGoogle Scholar
  10. 10.
    E.K. Savan, G. Erdoğdu, Simultaneous determination of levodopa and benserazide using poly(3-methylthiophene) and a multi-walled carbon nanotube sensor. J. Solid State Electrochem. 21, 2209–2217 (2017)CrossRefGoogle Scholar
  11. 11.
    B. Rezaei, L. Shams-Ghahfarokhi, E. Havakeshian, A.A. Ensafi, An electrochemical biosensor based on nanoporous stainless steel modified by gold and palladium nanoparticles for simultaneous determination of levodopa and uric acid. Talanta 158, 42–50 (2016)CrossRefGoogle Scholar
  12. 12.
    H.Y. Yue, S.S. Song, S. Huang, H. Zhang, X.P.A. Gao, X. Gao et al., Preparation of MoS2-graphene hybrid nanosheets and simultaneously electrochemical determination of levodopa and uric acid. Electroanalysis 29, 2565–2571 (2017)CrossRefGoogle Scholar
  13. 13.
    M.F.S. Teixeira, L.H. Marcolino-Júnior, O. Fatibello-Filho, E.R. Dockal, M.F. Bergamini, An electrochemical sensor for l-dopa based on oxovanadium-salen thin film electrode applied flow injection system. Sens. Actuators B 122, 549–555 (2007)CrossRefGoogle Scholar
  14. 14.
    A. Babaei, M. Babazadeh, A selective simultaneous determination of levodopa and serotonin using a glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite. Electroanalysis 23, 1726–1735 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Lee, S. Choi, S.J. Bae, S.M. Yoon, J.S. Choi, M. Yoon, Visible light-sensitive APTES-bound ZnO nanowire toward a potent nanoinjector sensing biomolecules in a living cell. Nanoscale 5, 10275–10282 (2013)CrossRefGoogle Scholar
  16. 16.
    N. Izyumskaya, A. Tahira, Z.H. Ibupoto, N. Lewinski, V. Avrutin, Ü Özgür et al., Review—electrochemical biosensors based on ZnO nanostructures. ECS J. Solid State Sci. Technol. 6, Q84–Q100 (2017)CrossRefGoogle Scholar
  17. 17.
    N.R. Shanmugam, S. Muthukumar, A.P. Selvam, S. Prasad, Electrochemical nanostructured ZnO biosensor for ultrasensitive detection of cardiac troponin-T. Nanomedicine 11, 1345–1358 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Elahe, M. Ali, B. Hadi, A. Reza, Synthesis of ZnO nanorods and their application in the construction of a nanostructure-based electrochemical sensor for determination of levodopa in the presence of carbidopa. Analyst 139, 4356–4364 (2016)Google Scholar
  19. 19.
    A. Afkhami, F. Kafrashi, T. Madrakian, Electrochemical determination of levodopa in the presence of ascorbic acid by polyglycine/ZnO nanoparticles/multi-walled carbon nanotubes-modified carbon paste electrode. Ionics 21, 2937–2947 (2015)CrossRefGoogle Scholar
  20. 20.
    H.Y. Yue, B. Wang, S. Huang, X. Gao, X.Y. Lin, L.H. Yao et al., Determination of levodopa in the presence of uric acid using a ZnO nanoflower-modified indium tin oxide glass electrode. Ionics 23, 1–8 (2017)CrossRefGoogle Scholar
  21. 21.
    L. Wei, F. Li, Hydrothermal synthesis of ZnO flower-reduced graphene oxide composite for electrochemical determination of ascorbic acid. Fullerenes Nanotub. Carbon Nanostructures 25, 00–09 (2017)Google Scholar
  22. 22.
    A.R. Marlinda, A. Pandikumar, N. Yusoff, N.M. Huang, N.L. Hong, Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim. Acta 182, 1113–1122 (2015)CrossRefGoogle Scholar
  23. 23.
    K. Alireza, H. Laleh, S.N. Ali et al., Development of electrochemical sensor for sensitive determination of oxazepam based on silver-platinum core–shell nanoparticles supported on graphene. J. Electroanal. Chem. 823, 61–66 (2018)CrossRefGoogle Scholar
  24. 24.
    K. Hamid, S.N. Ali, E.A. Mohammad et al., Eco-friendly synthesis of PbTiO3nanoparticles and PbTiO3/carbon quantum dots binary nano-hybrids for enhanced photocatalytic performance under visible light. Sep. Purif. Technol. 18, 873–881 (2019)Google Scholar
  25. 25.
    J. Amani, M. Maleki, A. Khoshroo et al., An electrochemical immunosensor based on poly, p-phenylenediamine and graphene nanocomposite for detection of neuron-specific enolase via electrochemically amplified detection. Anal. Biochem. 548, 53–59 (2018)CrossRefGoogle Scholar
  26. 26.
    H.R. Naderi, A. Sobhaninasab, M. Rahiminasrabadi et al., Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors. Appl. Surf. Sci. 423, 1025–1034 (2016)CrossRefGoogle Scholar
  27. 27.
    K. Ghanbari, M. Moludi, Flower-like ZnO decorated polyaniline/reduced graphene oxide nanocomposites for simultaneous determination of dopamine and uric acid. Anal. Biochem. 512, 91–102 (2016)CrossRefGoogle Scholar
  28. 28.
    X. Li, Y. Chen, Z. Cheng, L. Jia, S. Mo, Z. Liu, Ultrahigh specific surface area of graphene for eliminating subcooling of water. Appl. Energy 130, 824–829 (2014)CrossRefGoogle Scholar
  29. 29.
    H. Shu, X. Chen, X. Tao, D. Feng, Edge structural stability and kinetics of graphene chemical vapor deposition growth. ACS Nano 6, 3243–3250 (2012)CrossRefGoogle Scholar
  30. 30.
    S. Mutyala, J. Mathiyarasu, A reagentless non-enzymatic hydrogen peroxide sensor presented using electrochemically reduced graphene oxide modified glassy carbon electrode. Mater. Sci. Eng. C 69, 398–406 (2016)CrossRefGoogle Scholar
  31. 31.
    X. Gao, J. Jang, S. Nagase, Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114, 832–842 (2010)CrossRefGoogle Scholar
  32. 32.
    G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu et al., Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112, 8192–8195 (2008)CrossRefGoogle Scholar
  33. 33.
    J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li et al., Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem. Mater. 21, 3514–3520 (2009)CrossRefGoogle Scholar
  34. 34.
    H.Y. Yue, S. Huang, J. Chang, C. Heo, F. Yao, S. Adhikari et al., ZnO nanowire arrays on 3D hierachical graphene foam: biomarker detection of Parkinson’s disease. ACS Nano 8, 1639–1646 (2014)CrossRefGoogle Scholar
  35. 35.
    K. Wang, J. Xu, X. Wang, The Effects of ZnO morphology on photocatalytic efficiency of ZnO/RGO nanocomposites. Appl. Surf. Sci. 360, 270–275 (2016)CrossRefGoogle Scholar
  36. 36.
    H.Y. Yue, H. Zhang, S. Huang et al., Synthesis of ZnO nanowire arrays/3D graphene foam and application for determination of levodopa in the presence of uric acid. Biosens. Bioelectron. 89, 592–597 (2016)CrossRefGoogle Scholar
  37. 37.
    H.Y. Yue, B. Wang, S. Huang, X. Gao, S.S. Song, E.H. Guan et al., Synthesis of graphene/ZnO nanoflowers and electrochemical determination of levodopa in the presence of uric acid. J. Mater. Sci. Mater. Electron. 12, 1–9 (2018)Google Scholar
  38. 38.
    H.Y. Yue, H. Zhang, J. Chang, X. Gao, S. Huang, L.H. Yao et al., Highly sensitive and selective uric acid biosensor based on a three-dimensional graphene foam/indium tin oxide glass electrode. Anal. Biochem. 488, 22–27 (2015)CrossRefGoogle Scholar
  39. 39.
    J.H. Ko, S. Yeo, J.H. Park, J. Choi, C. Noh, S.U. Son, Graphene-based electrochromic systems: the case of Prussian Blue nanoparticles on transparent graphene film. Chem. Commun. (Camb) 48, 3884–3886 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hong Yan Yue
    • 1
    Email author
  • Peng Fei Wu
    • 1
  • Shuo Huang
    • 1
    • 2
  • Xin Gao
    • 1
  • Zhao Wang
    • 1
  • Wan Qiu Wang
    • 1
  • Hong Jie Zhang
    • 1
  • Shan Shan Song
    • 1
  • Xin Rui Guo
    • 1
  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China
  2. 2.Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China

Personalised recommendations