Highly oxidized and exfoliated graphene using a modified Tour approach

  • Dulce K. Becerra-PaniaguaEmail author
  • M. Sotelo-Lerma
  • Hailin Hu


A comparative study of different chemical modified methods of graphene oxide (GO) synthesis is described, using natural graphite as starting material. The first one (GO-1) is an improved Hummers method without using NaNO3. The second one (GO-2) is the reported “modified Hummers method”. The third one (GO-3) is our variation of the Tour method, in which we use a different protective agent, H3BO3, instead of the commonly used H3PO4 in the original Tour method. With GO-3 method, we are able to reduce significantly the oxidation time of graphite by increasing significantly the amount of oxidizing agent (KMnO4). The fourth one (GO-4) is a combination of GO-2 and GO-3. The properties of GO powders were analyzed by UV–Visible spectroscopy, Fourier Transform Infrared spectroscopy, X-ray photoelectron spectroscopy, high-resolution scanning electron microscopy, high-resolution transmission electron microscopy, X-ray energy dispersive spectroscopy and X-ray diffraction. It is observed that with GO-3 method natural graphite has been highly oxidized and becomes GO with a 9.20 Å interlayer space and a carbon to oxygen ratio of about 0.8. The new protective agent has given a good exfoliation, leading double layers of graphene oxide sheets with more intact graphene basal planes. Comparing with the original Tour method, our products from GO-3 method are obtained in much less time of production and show a high-quality of GO sheets with a selected number of layers.



The authors would like to thank the technical support from Rogelio Morán-Elvira for HR-SEM, Maria Luisa Ramón-García for XRD, Samuel Tehuacanero-Cuapa for HR-TEM and Roberto Mora Monroy for XPS characterization. We are thankful to Dagoberto Cabrera-German from the Universidad de Sonora for the technical assistance in XPS. Dulce K. Becerra-Paniagua acknowledges Consejo Nacional de Ciencia y Tecnología (CONACyT-Mexico) for her PhD scholarship. Financial supports from Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT)-Universidad Nacional Autónoma de México (UNAM)(IN102619), CONACyT-Secretaría de Energía (SENER)-Centro Mexicano de Innovación en Energía Solar (CeMIE-Sol) (2013-2, P27) and CONACyT-Fronteras de la Ciencia 2016–2024 are acknowledged.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    A. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)Google Scholar
  2. 2.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4(8), 4806–4814 (2010)Google Scholar
  3. 3.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306(5696), 666–669 (2004)Google Scholar
  4. 4.
    C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312(5777), 1191–1196 (2006)Google Scholar
  5. 5.
    Z.S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, H.M. Cheng, Carbon 47(2), 493–499 (2009)Google Scholar
  6. 6.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes. Y. Jia, Carbon 45(7), 1558–1565 (2007)Google Scholar
  7. 7.
    S. Park, R. Ruoff, Nat. Nanotechnol. 4(4), 217–224 (2009)Google Scholar
  8. 8.
    Y. Wei, Z. Sun, Curr. Opin. Colloid Interface Sci. 20(5–6), 311–321 (2015)Google Scholar
  9. 9.
    D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3(2), 101–105 (2008)Google Scholar
  10. 10.
    G. Yoon, D.-H. Seo, K. Ku, J. Kim, S. Jeon, K. Kang, Chem. Mater. 27(6), 2067–2073 (2015)Google Scholar
  11. 11.
    M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, J. Am. Chem. Soc. 131(10), 3611–3620 (2009)Google Scholar
  12. 12.
    Y. Si, E. Samulski, Nano Lett. 8(6), 1679–1682 (2008)Google Scholar
  13. 13.
    D.R. Dreyer, S. Park, C.W. Bielawsk, R.S. Ruoff, Chem. Soc. Rev. 39(1), 228–240 (2010)Google Scholar
  14. 14.
    U. Hofmann, A. Frenzel, Kolloid Z. 68(2), 149–151 (1934)Google Scholar
  15. 15.
    G. Ruess, Monatsh. Chem. 76, 381–417 (1947)Google Scholar
  16. 16.
    A. Lerf, H. He, M. Forster, J. Klinowski, J. Phys. Chem. B 102(23), 4477–4482 (1998)Google Scholar
  17. 17.
    K. Erickson, R. Erni, Z. Zonghoon Lee, N. Alem, A. Will Gannett, A. Zettl, Adv. Mater. 22(40), 4467–4472 (2010)Google Scholar
  18. 18.
    D. Konios, M.M. Stylianakis, E. Stratakis, E. Kymakis, J. Colloid Interf. Sci. 430, 108–112 (2014)Google Scholar
  19. 19.
    A. Allagui, M.A. Abdelkareem, H. Alawadhi, A.S. Elwakil, Sci. Rep. 6, 1–6 (2016)Google Scholar
  20. 20.
    W. Du, M. Wu, M. Zhang, G. Xu, T. Gao, L. Qian, X. Yu, F. Chi, C. Li, G. Shi, Carbon 129, 15–20 (2018)Google Scholar
  21. 21.
    E. Jokar, Z.Y. Huang, S. Narra, C.-Y. Wang, V. Kattoor, C-C E. Chung, W-G. Diau, Adv. Energy Mater. 8, 1–10 (2018)Google Scholar
  22. 22.
    A. Agresti, S. Pescetelli, B. Taheri, A.E. del R. Castillo, L. Cina, F. Bonaccorso, A.D. Carlo, ChemSusChem. 9, 2609–2619 (2016)Google Scholar
  23. 23.
    Q.-D. Yang, J. Li, Y. Cheng, H.-W. Li, Z. Guan, B. Yu, S.-W. Tsang, J. Mater. Chem. A 5, 9852–9858 (2017)Google Scholar
  24. 24.
    E. Jokar, Z.Y. Huang, S. Narra, C.-Y. Wang, V. Kattoor, C.-C. Chung, E.W.-G. Diau, Adv. Energy Mater. 8(3), 1–10 (2017)Google Scholar
  25. 25.
    C.-C. Chung, S. Narra, E. Jokar, H.-P. Wu, E.W.-G. Diau, J. Mater. Chem. A 5, 13957–13965 (2017)Google Scholar
  26. 26.
    B.C. Brodie, Phil. Trans. R. Soc. Lond. 149, 249–259 (1859)Google Scholar
  27. 27.
    L. Staudenmaier, Ber. Dtsch. Chem. Ges. 31, 1481–1487 (1898)Google Scholar
  28. 28.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339–1339 (1958)Google Scholar
  29. 29.
    J. Chen, B. Yao, C. Li, G. Shi, Carbon 64, 225–229 (2013)Google Scholar
  30. 30.
    J. Tour, D.V. Kosynkin, US Patent, US0129736A1, 2012Google Scholar
  31. 31.
    Y.-J. Li, B.-D.T.W.-J. Huang, Mater. Sci. Eng. B 193, 37–40 (2015)Google Scholar
  32. 32.
    Y. Hu, S. Song, A. Lopez-Valdivieso, J. Colloid Interface Sci. 450, 68–73 (2015)Google Scholar
  33. 33.
    J. Chen, Y. Li, L. Huang, C. Li, G. Shi, Carbon 81, 826–834 (2015)Google Scholar
  34. 34.
    J. Sun, N. Yang, Z. Sun, M. Zeng, L. Fu, C. Hu, S. Hu, ACS Appl. Mater. Interfaces 7, 21356–21363 (2015)Google Scholar
  35. 35.
    L. Peng, Z. Hu, Z. Liu, Y. Wei, H. Sun, Z. Li, X. Zhao, C. Gao, Nat. Commun. 6, 5716 (2015)Google Scholar
  36. 36.
    H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, Sci. Rep. 6(36143), 1–7 (2016)Google Scholar
  37. 37.
    D.A. Jasmin, N. Lozano, K. Kostarelos, 2D Mater. 3(1), 1–7 (2016). Google Scholar
  38. 38.
    K. Krishnamoorthy, M. Veerapandian, K. Yun, S.-J. Kim, Carbon 53, 38–49 (2013)Google Scholar
  39. 39.
    A.M. Dimiev, J.M. Tour, ACS Nano 8(3), 3060–3068 (2014)Google Scholar
  40. 40.
    T.F. Emiru, D.W. Ayele, Egypt J. Basic Appl. Sci. 4(1), 74–79 (2017)Google Scholar
  41. 41.
    J. Guerrero-Contreras, F. Caballero-Briones, Mater. Chem. Phys. 153, 209–220 (2015)Google Scholar
  42. 42.
    X. Gao, J. Jang, S. Nagase, J. Phys. Chem. C 114(2), 832–842 (2010)Google Scholar
  43. 43.
    S. Thakur, N. Karak, Carbon 50(14), 5331–5339 (2012)Google Scholar
  44. 44.
    J.H. Kang, T. Kim, J. Choi, J. Park, Y.S. Kim, M.S. Chang, H. Jung, K.T. Park, S.J. Yang, C.R. Park, Chem. Mater. 28(3), 756–764 (2016)Google Scholar
  45. 45.
    A. Mathkar, D. Tozier, P. Cox, P. Ong, C. Galande, K. Balakrishnan, A.L.M. Reddy, P.M. Ajayan, J. Phys. Chem. Lett. 3(8), 986–991 (2012)Google Scholar
  46. 46.
    G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, J. Phys. Chem. C 113(35), 15768–15771 (2009)Google Scholar
  47. 47.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15(2), 627–637 (1966)Google Scholar
  48. 48.
    L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, P.M. Ajayan, Nano Lett. 10(8), 3209–3215 (2010)Google Scholar
  49. 49.
    Y. Zhang, C. Pan, J. Mater. Sci. 46(8), 2622–2626 (2011)Google Scholar
  50. 50.
    S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, M. Chhowalla, ACS Nano 6(4), 3169–3174 (2010)Google Scholar
  51. 51.
    N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 3rd edn. (Academic Press, London, 1990), pp. 261–337Google Scholar
  52. 52.
    E. Fuente, J.A. Menéndez, M.A. Díez, D. Suárez, M.A. Montes-Morán, J. Phys. Chem. B 107(26), 6350–6359 (2003)Google Scholar
  53. 53.
    J.-A. Yan, M.Y. Chou, Phys. Rev. B 82(12), 21–24 (2010)Google Scholar
  54. 54.
    L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, J. Electron Spectrosc. Relat. Phenom. 195, 145–154 (2014)Google Scholar
  55. 55.
    C.K. Chua, Z. Sofer, M. Pumera, Chem. Eur. J. 18(42), 13454–13455 (2012)Google Scholar
  56. 56.
    A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, J. Phys. Chem. C 115(34), 17009–17019 (2011)Google Scholar
  57. 57.
    V. Leon, M. Quintana, M.A. Herrero, J.G. Fierro, A. de la Hoz, M. Prato, E. Vázquez, Chem. Commun. 47(39), 10936–10938 (2011)Google Scholar
  58. 58.
    A. Higginbotham, D. Kosynkin, A. Sinitskii, Z. Sun, J.M. Tour, ACS Nano 4(4), 2059–2069 (2010)Google Scholar
  59. 59.
    M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud’homme, I.A. Aksay, Chem. Mater. 19(18), 4396–4404 (2007)Google Scholar
  60. 60.
    L. Feng, G. Gao, P. Huang, X. Wang, C. Zhang, J. Zhang, S. Guo, D. Cui, Nanoscale Res. Lett. 6(1), 1–10 (2011)Google Scholar
  61. 61.
    H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, J. Phys. Chem. B 110(17), 8535–8539 (2006)Google Scholar
  62. 62.
    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl, Solid State Commun. 143(1–2), 101–109 (2007)Google Scholar
  63. 63.
    M. Yi, Z. Shen, X. Zhang, S. Ma, J. Phys. D: Appl. Phys. 46, 1–9 (2013). Google Scholar
  64. 64.
    J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Martis, T. Hayashi, J.-J. Zhu, P.M. Ajayan, Nano Lett. 12(2), 844–849 (2012)Google Scholar
  65. 65.
    K.A. Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G. Eda, C. Mattevi, S. Miller, M. Chhowalla, Nano Lett. 9(3), 1058–1063 (2009)Google Scholar
  66. 66.
    G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, J. Phys. Chem. C 112(22), 8192–8195 (2008)Google Scholar
  67. 67.
    D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Nature 44(7152), 457–460 (2007)Google Scholar
  68. 68.
    T.D. Burchel, Carbon Materials for Advanced Technologies, 1st edn. (Elsevier, Pergamon, 1999), pp. 348Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico
  2. 2.Universidad de SonoraHermosilloMexico

Personalised recommendations