Advertisement

Effect of holmium doping on structural, electrical and piezoelectric properties of lead-free (Ba,Ca)(Ti,Sn)O3 ceramics

  • Chitra
  • Radhapiyari Laishram
  • Aditi Vashishtha
  • Mukesh Kumar Singh
  • Kamal Kant Chandra
  • K. Chandramani SinghEmail author
Article
  • 22 Downloads

Abstract

Lead-free (Ba0.91Ca0.09Sn0.07Ti0.93)O3 (BCST) ceramics, doped with holmium (Ho) in the range 0–1.0 mol%, were synthesized using conventional solid-state sintering method. XRD analyses of these ceramic samples confirm single phase pure perovskite structure. Evidence of Ho3+ substituting Ba2+ via electronic charge compensation exists in the range 0–0.4 mol%, while ionic charge compensation mechanism dominates beyond 0.4 mol%. Crystallite size and lattice strain undergo systematic change, while the room temperature dielectric constant (εrt) decreases with increasing Ho content. The Curie temperature Tc and maximum dielectric constant (εm) at Tc remain almost unchanged. Remnant polarization (Pr), electromechanical coupling constant (kp) and piezoelectric charge coefficient (d33) exhibit increasing trend with increasing Ho content and reach their maximum values of 8.2 µC/cm2, 25% and 220 pC/N respectively at 1.0 mol% of Ho content. The study reveals that doping of BCST system with appropriate quantity of Ho can improve its ferroelectric and piezoelectric properties.

Notes

Acknowledgements

This work is financially supported by the Department of Science and Technology, India, under the Research Project No. EMR/2014/284. We also acknowledge the directors of solid state physics laboratory, Delhi for providing facilities for some measurements.

References

  1. 1.
    B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics, (Academic Press, London, 1971)Google Scholar
  2. 2.
    H. Du, Z. Li, F. Tang, S. Qu, Z. Pei, W. Zhou, Mater. Sci. eng. B 131, 83 (2006)CrossRefGoogle Scholar
  3. 3.
    R. Gaur, A. Dhingra, S. Pal, K.C. Singh, J. Alloys Compd. 625, 284 (2015)CrossRefGoogle Scholar
  4. 4.
    P. Kantha, K. Pengpat, P. Jarupoom, U. Intatha, G. Rujijanagul, T. Tunkasiri, Curr. Appl. Phys. 9, 460 (2009)CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, J. Li, B. Zhang, C. Peng, J. Appl. Phys. 103, 074109 (2008)CrossRefGoogle Scholar
  6. 6.
    C. Zhou, X. Liu, Mater. Chem. Phys. 108, 413 (2008)CrossRefGoogle Scholar
  7. 7.
    K.C. Chitra, Singh, J. Alloys Compd. 765, 869 (2018)CrossRefGoogle Scholar
  8. 8.
    W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)CrossRefGoogle Scholar
  9. 9.
    D. Xue, Y. Zhou, H. Bao, J. Gao, C. Zhou, X. Ren, Appl. Phys. Lett. 99, 122901 (2011)CrossRefGoogle Scholar
  10. 10.
    X. Liu, M. Zhu, Z. Chen, B. Fang, J. Ding, X. Zhao, H. Xu, H. Luo, J. Alloys Compd. 613, 219 (2014)CrossRefGoogle Scholar
  11. 11.
    Z. Zhao, X. Li, H. Ji, Y. Dai, T. Li, J. Alloys Compd. 637, 291 (2015)CrossRefGoogle Scholar
  12. 12.
    R. Guo, L.E. Cross, S.E. Park, B. Noheda, D.E. Cox, G. Shirane, Phys. Rev. Lett. 84, 5423 (2000)CrossRefGoogle Scholar
  13. 13.
    Y. Ishibashi, M. Iwata, Jpn. J. Appl. Phys. 37, L985 (1998)CrossRefGoogle Scholar
  14. 14.
    M. Chen, Z. Xu, R. Chu, H. Qiu, M. Li, Y. Liu, L. Shao, S. Ma, W. Ji, W. Li, S. Gong, G. Li, Phys. B 433, 43 (2014)CrossRefGoogle Scholar
  15. 15.
    Y. Sakabe, Y. Hamaji, H. Sano, N. Wada, Jpn. J. Appl. Phys. 41, 5668 (2002)CrossRefGoogle Scholar
  16. 16.
    H. Saito, H. Chazono, H. Kishi, N. Yamaoka, Jpn. J. Appl. Phys. 30, 2307 (2001)CrossRefGoogle Scholar
  17. 17.
    Y. Tsur, T.D. Dunbar, C.A. Randall, J. Electroceram. 7, 25 (2001)CrossRefGoogle Scholar
  18. 18.
    G.V. Lewis, C.R.A. Catlow, J. Radiat. Eff. 73, 307 (1983)CrossRefGoogle Scholar
  19. 19.
    G.V. Lewis, C.R.A. Catlow, J. Phys. Chem. Sol. 47, 89 (1986)CrossRefGoogle Scholar
  20. 20.
    J. Itoh, H. Haneda, S. Hishita, I. Sakaguchi, N. Ohashi, D.C. Park, I. Yashima, J. Mater. Res. 19, 3512 (2004)CrossRefGoogle Scholar
  21. 21.
    J. Itoh, D.C. Park, N. Ohashi, I. Sakaguchi, I. Yashima, H. Haneda, J. Tanaka, J. Ceram. Soc. Jpn. 110, 495 (2002)CrossRefGoogle Scholar
  22. 22.
    D. Makovec, Z. Samardmija, M. Drofenik, J. Am. Ceram. Soc. 89, 3281 (2006)CrossRefGoogle Scholar
  23. 23.
    Y. Liu, A.R. West, J. Eur. Ceram. Soc. 29, 3249 (2009)CrossRefGoogle Scholar
  24. 24.
    P.A. Jha, A.K. Jha, Ceram. Inter. 40, 5209 (2014)CrossRefGoogle Scholar
  25. 25.
    K. Sasaki, J. Maier, J. Appl. Phys. 86, 5422 (1999)CrossRefGoogle Scholar
  26. 26.
    S.H. Yoon, H. Kim, J. Appl. Phys. 92, 1039 (2002)CrossRefGoogle Scholar
  27. 27.
    C. Dong, J. Appl. Crystallogr. 32, 838 (1999)CrossRefGoogle Scholar
  28. 28.
    B.D. Cullity, Elements of X-ray diffraction (Addison and Wesley Publishing Company Inc., Boston, 1978), p. 356Google Scholar
  29. 29.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)CrossRefGoogle Scholar
  30. 30.
    C.V. Lewis, C.R. Catlow, J. Phys. Chem. Solids 47, 89 (1986)CrossRefGoogle Scholar
  31. 31.
    M.T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, J. Am. Ceram. Soc. 84, 376 (2001)CrossRefGoogle Scholar
  32. 32.
    F.A. KrÓ§ger, H.J. Vink, Solid State Physics (Academic Press, New York, 1956)Google Scholar
  33. 33.
    H.M. Chan, M.P. Harmer, D.M. Smyth, J. Am. Ceram. Soc. 69, 507 (1986)CrossRefGoogle Scholar
  34. 34.
    J. Jeong, E.J. Lee, Y.H. Han, Jpn. J. Appl. Phys. 44, 4047 (2005)CrossRefGoogle Scholar
  35. 35.
    H.-I. Hsiang, F.-S. Yang, J. Am. Ceram. Soc. 79(4), 1053 (1996)CrossRefGoogle Scholar
  36. 36.
    C. Wu, W. Duan, X.W. Zhang, Z. Liu, J. Appl. Phys. 108, 124102 (2010)CrossRefGoogle Scholar
  37. 37.
    J.F. Li, Z.X. Zhu, F.P. Lai, J. Phys. Chem. C 114, 17796 (2010)CrossRefGoogle Scholar
  38. 38.
    V.S. Puli, P. Li, S. Adireddy, D.B. Chrisey, J. adv. dielectr. 5, 1550027 (2015)CrossRefGoogle Scholar
  39. 39.
    Y. Zhen, J.F. Li, J. Am. Ceram. Soc. 90, 3496 (2007)CrossRefGoogle Scholar
  40. 40.
    S. Wang, T.A. Tan, M.O. Lai, L. Lu, Mater Res Bull 45, 279 (2010)CrossRefGoogle Scholar
  41. 41.
    K. Uchino, S. Nomura, Integr. Ferroelectr. 44, 55 (1982)CrossRefGoogle Scholar
  42. 42.
    G. Arlt, D. Hennings, G. de With, J. Appl. Phys. 58, 1619 (1985)CrossRefGoogle Scholar
  43. 43.
    C. Leu, C.Y. Chen, C.H. Chien, Appl. Phys. Lett. 82, 3493 (2003)CrossRefGoogle Scholar
  44. 44.
    J.S. Liu, S.R. Zhang, H.Z. Zeng, C.T. Yang, Y. Yuan, Phys. Rev. B 72, 172101 (2005)CrossRefGoogle Scholar
  45. 45.
    K. Ishikawa, K. Yoshikawa, N. Okada, Phys. Rev. B 37, 5852 (1988)CrossRefGoogle Scholar
  46. 46.
    M.H. Frey, D.A. Payne, Phys. Rev. B 54, 3158 (1996)CrossRefGoogle Scholar
  47. 47.
    S. Huo, S. Yuan, Z. Tian, C. Wang, Y. Qiu, J. Am. Ceram. Soc. 95, 1383 (2012)CrossRefGoogle Scholar
  48. 48.
    Y. Noguchi, H. Shimizu, M. Miyayama, J. Ceram. Soc. Jpn. 110, 999 (2002)CrossRefGoogle Scholar
  49. 49.
    S.C. Abrahams, S.K. Kurtz, P.B. Jamieson, Phys. Rev. 172, 551 (1968)CrossRefGoogle Scholar
  50. 50.
    B.M. Jin, J. Kim, S.C. Kim, Appl. Phys. A 65, 53 (1997)CrossRefGoogle Scholar
  51. 51.
    K.C. Singh, C. Jiten, R. Laishram, O.P. Thakur, D.K. Bhattacharya, J. Alloys Compd. 496, 717 (2010)CrossRefGoogle Scholar
  52. 52.
    H. Takahashi, Y. Numamoto, J. Tani, K. Matsuta, J. Qiu, S. Tsurekawa, Jpn. J. Appl. Phys. 45, L30 (2006)CrossRefGoogle Scholar
  53. 53.
    C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chitra
    • 1
  • Radhapiyari Laishram
    • 2
  • Aditi Vashishtha
    • 1
  • Mukesh Kumar Singh
    • 1
  • Kamal Kant Chandra
    • 1
  • K. Chandramani Singh
    • 1
    Email author
  1. 1.Department of Physics, Sri Venkateswara CollegeUniversity of DelhiNew DelhiIndia
  2. 2.Solid State Physics LaboratoryDelhiIndia

Personalised recommendations