Advertisement

Enhanced multiferroic properties of dense Bi4LaTi3FeO15 ceramics of layered Aurivillius structure prepared by hot-press sintering

  • Zhiwei Feng
  • Renjie Zhang
  • Erding Zhao
  • Shengxian Yan
  • Yongcheng Zhang
  • Weijin Kong
  • Wanneng Ye
  • Chaojing Lu
Article
  • 41 Downloads

Abstract

Bi4LaTi3FeO15 (BLTF) multiferroic ceramics of four-layered Aurivillius structure were successfully synthesized by hot-press sintering via inserting magnetic LaFeO3 into ferroelectric Bi4Ti3O12 matrix. The BLTF ceramics are very dense and consist mainly of plate-like grains. The ceramics show saturated ferroelectric loops with a remanent polarization 2Pr of 32.3 µC/cm2 and a coercive field 2Ec of 188 kV/cm. Their permittivity and dissipation factor are about 245 and 0.0228 at 100 kHz. The leakage current density is 1.6 × 10−5 A/cm2 at the applied electric field of 170 kV/cm. The room temperature saturation magnetization value of the BLTF ceramics is about 0.088 emu/g. Compared to the BLTF ceramics prepared by pressureless sintering, the ferroelectric, dielectric and magnetic properties of the present BLTF ceramics are enhanced obviously. This work gives a new pathway for synthesing high-performance room-temperature multiferroic ceramics.

Notes

Acknowledgements

This work was supported by the National Science Foundation of China (11674186, 51472131, 11504193), and the innovation experiment project of Qingdao University.

References

  1. 1.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)CrossRefGoogle Scholar
  2. 2.
    R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21–29 (2007)CrossRefGoogle Scholar
  3. 3.
    N. Ortega, A. Kumar, J.F. Scott, R.S. Katiyar, J. Phys. 27, 504002 (2015)Google Scholar
  4. 4.
    R.S. Singh, T. Bhimasankaram, G.S. Kumar, S.V. Suryananrayana, Solid State Commun. 91, 567–569 (1994)CrossRefGoogle Scholar
  5. 5.
    F.X. Wu, Z. Chen, Y.B. Chen, S.T. Zhang, J. Zhou, Y.Y. Zhu, Y.F. Chen, Appl. Phys. Lett. 98, 212501 (2011)CrossRefGoogle Scholar
  6. 6.
    X.Y. Mao, H. Sun, W. Wang, X.B. Chen, Y.L. Lu, Appl. Phys. Lett. 102, 072904 (2013)CrossRefGoogle Scholar
  7. 7.
    J. Yang, L.H. Yin, Z. Liu, X.B. Zhu, W.H. Song, J.M. Dai, Z.R. Yang, Y.P. Sun, Appl. Phys. Lett. 101, 012402 (2012)CrossRefGoogle Scholar
  8. 8.
    Z. Liu, J. Yang, X.W. Tang, L.H. Yin, X.B. Zhu, J.M. Dai, Y.P. Sun, Appl. Phys. Lett. 101, 122402 (2012)CrossRefGoogle Scholar
  9. 9.
    X. Cao, Z.Q. Liu, L.R. Dedon, A.J. Bell, F. Esat, Y.J. Wang, P. Yu, C.S. Wang, P. Jin, J. Mater. Chem. C 5, 7720 (2017)CrossRefGoogle Scholar
  10. 10.
    B. Yuan, J. Yang, J. Chen, X.Z. Zuo, L.H. Yin, X.W. Tang, X.B. Zhu, J.M. Dai, W.H. Song, Y.P. Sun, Appl. Phys. Lett. 104, 062413 (2014)CrossRefGoogle Scholar
  11. 11.
    H. Sun, X.M. Lu, J. Su, T.T. Xu, C.C. Ju, F.Z. Huang, J.S. Zhu, J. Phys. D 45, 385001 (2012)CrossRefGoogle Scholar
  12. 12.
    M.S. Wu, Z.M. Tian, S.L. Yuan, Z.B. Huang, Mater. Lett. 68, 190–192 (2012)CrossRefGoogle Scholar
  13. 13.
    T. Pikula, J. Dzik, P. Guzdek, V.I. Mitsiuk, Ceram. Int. 43, 11442–11449 (2017)CrossRefGoogle Scholar
  14. 14.
    S.X. Yan, Z.W. Feng, Z.M. Ma, Y.C. Zhang, W.N. Ye, Mater. Lett. 227, 247–249 (2018)CrossRefGoogle Scholar
  15. 15.
    R.X. Ti, F.Z. Huang, W.L. Zhu, J. He, T.T. Xu, C. Yue, J. Zhao, X.M. Lu, J.S. Zhu, Ceram. Int. 41, S453–S457 (2015)CrossRefGoogle Scholar
  16. 16.
    B. Aurivillius, Ark. Kemi. 1, 499–512 (1950)Google Scholar
  17. 17.
    A.D. Rae, J.G. Thompson, R.L. Withers, A.C. Willis, Acta Cryst. B46, 474–487 (1990)CrossRefGoogle Scholar
  18. 18.
    P.C. Joshi, S.B. Desu, J. Appl. Phys. 80, 2349 (1996)CrossRefGoogle Scholar
  19. 19.
    S.K. Kim, M. Miyayama, H. Yanagida, Mater. Res. Bull 31, 121–131 (1996)CrossRefGoogle Scholar
  20. 20.
    J.A. Horn, S.C. Zhang, U. Selvaraj, G.L. Messing, S.T. McKinstry, J. Am. Ceram. Soc. 82, 921–926 (1999)CrossRefGoogle Scholar
  21. 21.
    T. Jardiel, A.C. Caballero, M. Villegas, J. Ceram. Soc. Jpn. 116, 511–518 (2008)CrossRefGoogle Scholar
  22. 22.
    L.H. Wang, J. Teng, P. Liu, A. Hirata, E. Ma, Z. Zhang, M.W. Chen, X.D. Han, Nat. Commun. 5, 4402 (2014)CrossRefGoogle Scholar
  23. 23.
    T. Takenaka, K. Sakata, Jpn. J. Appl. Phys. 19, 31–39 (1980)CrossRefGoogle Scholar
  24. 24.
    Y.Q. Tan, J.L. Zhang, Y.Q. Wu, C.L. Wang, V. Koval, B.G. Shi, H.T. Ye, R. McKinnon, G. Viola, H.X. Yan, Sci. Rep 5, 9953 (2015)CrossRefGoogle Scholar
  25. 25.
    A.R. Chaudhuri, S.B. Krupanidhi, J. Appl. Phys. 104, 104102 (2008)CrossRefGoogle Scholar
  26. 26.
    I.S. Golovina, M. Falmbigl, A.V. Plokhikh, T.C. Parker, C. Johnson, J.E. Spanier, J. Mater. Chem. C 6, 5462 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zhiwei Feng
    • 1
  • Renjie Zhang
    • 1
  • Erding Zhao
    • 1
  • Shengxian Yan
    • 1
  • Yongcheng Zhang
    • 1
  • Weijin Kong
    • 1
  • Wanneng Ye
    • 1
    • 2
  • Chaojing Lu
    • 1
    • 2
  1. 1.College of Physical Science and Key Laboratory of Photonics Materials and Technology in Universities of ShandongQingdao UniversityQingdaoChina
  2. 2.State Key Laboratory of Bio-Fibers and Eco-TextilesQingdao UniversityQingdaoChina

Personalised recommendations