Advertisement

The effects of MoO3/TPD multiple quantum well structures on the performance of organic light emitting diodes (OLEDs)

  • A. Ayobi
  • S. N. Mirnia
  • M. Rezaee Roknabadi
  • A. BahariEmail author
Article
  • 18 Downloads

Abstract

In the present work, the influence of the molybdenum trioxide (MoO3) /N,N–Bis(3-methylphenyl)-N,N–bis(phenyl)benzidine(TPD)-like diamine multiple quantum well (MQW) structures as a hole injection layer (HIL)/hole transport layer (HTL) on the performance of organic light emitting diodes(OLEDs) has been studied. These devices have been attracted intensively due to their importance for using in fabrication of displays and solid state lightning and their interesting properties such as the lower voltage for operation, lower power utilization for light emission, clarification, inexpensiveness and lightness. The obtained results show that by using the MQW structures, the current density, luminance, current efficiency, power efficiency and electroluminescence (EL) spectra intensity of OLEDs is enhanced with respect to the simple device (SD). In MQW devices, the difference between Fermi level of indium tin oxide (ITO) (4.7 eV) and HOMO level of TPD (5.4 eV), leads to the reduction of driving and operating voltage. This finding indicates an enhancement of the hole injection and can therefore be used for the future of OLED devices.

References

  1. 1.
    C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913–915 (1987)Google Scholar
  2. 2.
    W. Cao, Y. Zheng, Z. Li, E. Wrzesniewski, W.T. Hammond, J. Xue, Org. Electron. 13, 2221–2228 (2012)Google Scholar
  3. 3.
    S.W. Seo, E. Jung, S.J. Seo, H. Chae, H.K. Chung, S.M. Cho, J. Appl. Phys. 114, 1435051–1435057 (2013)Google Scholar
  4. 4.
    W. Brutting, j. Frischeisen, T.D. Schmidt, B.J. Scholz, C. Mayr, Phys. Status Solidi A. 1–22 (2012)Google Scholar
  5. 5.
    R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. .Taliani, D.D.C. Bradley, D.A.Dos Santos, J.L. .Bredas, M. Logdlund, W.R. Salaneck, Nature 397, 121–128 (1999)Google Scholar
  6. 6.
    T. Zhang, Z. Xu, L. Qian, F. Teng, Z.Q. He, X.R. Xu, Thin Solid Films .483, 346–350 (2005)Google Scholar
  7. 7.
    T. Matsushima, G.H. Jin, H. Murata, J. Appl. Phys. .104, 054501 (2008)Google Scholar
  8. 8.
    H.M. Zhang, C.H. Wallace, IEEE Trans. Electron. Dev .55, 2517–2520 (2008)Google Scholar
  9. 9.
    J.Pommerehne, Y.H.Tak, H.Vestweber, H. Bassler, Synth. Met. 76, 67–70 (1996)Google Scholar
  10. 10.
    D. Dastan, S.W. Gosavi, N.B. Chaure, Macromol. Symp. 347, 81–86 (2015)Google Scholar
  11. 11.
    D. Dastan, Appl. Phys. A. 123(699), 1–13 (2017)Google Scholar
  12. 12.
    L.S. Li, M. Guan, G.H. Cao, Y.Y. Li, Y.P. Zeng, Displays 33, 17–20 (2012)Google Scholar
  13. 13.
    C.F. Qiu, M. Wong, L.D. Wang, H.Y. Chen, H.S. Kwok, Appl. Phys. Lett. .79, 2276–2278 (2001)Google Scholar
  14. 14.
    S. NaKa, Y. Yamaguchi, T. Tsutsui, H. Okada, H. Onnagawa, Synth. Met. 111–112, 331–333 (2000)Google Scholar
  15. 15.
    L.S. Huang, M.G. Mason, C.W. Tang, Appl. Phys. Lett. 70, 152–154 (1997)Google Scholar
  16. 16.
    G.E. Jabbour, N.R. Armstrong, N. Peyghambarian, B. Kippelen, Appl. Phys. Lett. 73, 1185–1187 (1998)Google Scholar
  17. 17.
    T.M. Brown, R.H. Friend, J.H. Burroughes, I.S. Millard, D.J. Lacey, F. Cacialli, Appl. Phys. Lett. 79, 174–176 (2001)Google Scholar
  18. 18.
    S.J. Kang, S.Y. Kim, S. Lm, K. Jeong, D.S. .Park, C.N. Whang, Appl. Phys. Lett. .81, 2581–2583 (2002)Google Scholar
  19. 19.
    F.F. So, S.R. Forrest, Y.Q. Shi, W.H. Steler, Appl. Phys. Lett. 56, 674–676 (1990)Google Scholar
  20. 20.
    F.F. So, S.R. Forrest, Phys. Rev. Lett. 66, 2649–2652 (1991)Google Scholar
  21. 21.
    Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, K. Yoshino, Appl. Phys. Lett. 63, 1871–1873 (1993)Google Scholar
  22. 22.
    Y. Ohmori, A. Fujii, M. Uchida, C. Morishima, K. Yoshino, Appl. Phys. Lett. 62, 3250–3252 (1993)Google Scholar
  23. 23.
    H.Y. An, B.J. Chen, J.Y. Hou, J.C. Shen, S.Y. Liu, J. Phys. D: Appl.Phys. 31, 1144–1148 (1998)Google Scholar
  24. 24.
    S.Fujita,T.Nakazawa,M.Asano,Jpn. J. Appl. Phys. 39,5301–5309(2000)Google Scholar
  25. 25.
    D.W. Zhao, S.F. Song, F.J. Zhang, S.L. .Zhao, C. Xu, Z. Xu, Displays 28, 81–84 (2007)Google Scholar
  26. 26.
    A. Akimichi, T. Inoshita, S. Hotta, H. Noge, H. Sakaki, Appl. Phys. Lett. 63, 3158–3160 (1993)Google Scholar
  27. 27.
    X. Haitao, Z. Xiang, J. Appl. Phys. 114, 2445051–2445055 (2013)Google Scholar
  28. 28.
    F.X. Wang, X.F. Qiao, T. Xiong, D.G. Ma, Org. Electron. 9985–9989 (2008)Google Scholar
  29. 29.
    P.S. Wang, Y.Y. Lo, W.H. Tseng, M.H. Chen, C.I. Wu, J. Appl. Phys. 114, 0637101–0637105 (2013)Google Scholar
  30. 30.
    Y. Zhao, J. Zhang, S. Liu, Y. Gao, X. Yang, K.S. .Leck, A.P. Abiyasa, Y. Divayana, E. Mutlugun, S.T. .Tan, Q. Xiong, H.V. Demir, X.W. Sun, Org. Electron. 15, 871–877 (2014)Google Scholar
  31. 31.
    M. Shahbazi, A. Ghadesi, Sh. Bahari, Org. Electron. 32, 100–108 (2016)Google Scholar
  32. 32.
    D. Dastan, A. Banpurkar. J. Mater. Sci.: Mater. Electron. 28, 3851–3859 (2016)Google Scholar
  33. 33.
    M.D. Morales-Acosta, C.G. Alvarado-Beitra, M.A. Quevedo-Lopez, B.E. Gnade, J. Non-Cryst. Solids 326, 124–132 (2013)Google Scholar
  34. 34.
    A. Adeleh Hashemi, Bahari, S. Ghasemi, J. Mater. Sci. 28, 13313–13319 (2017)Google Scholar
  35. 35.
    D. Dastan, S.L. Panahi, N.B. Chaure, J. Mater. Sci. 27, 12291–12296 (2016)Google Scholar
  36. 36.
    M.D. Morales-Acosta, M.A. Quevedo-Lopez, B.E. Gnade, R.Ramirez -Bon, J. Sol–Gel. Sci. Technol. 58, 218–224 (2011)Google Scholar
  37. 37.
    D. Dastan, J. Atomic Mol. Cond. Nano Phys. 2(2, 109–114 (2015)Google Scholar
  38. 38.
    D. Dastan, S.L. Panahi, A.P. Yengntiwar, A.G. Banpurkar, Adv. Sci. Lett. 22(4), 950–953 (2016)Google Scholar
  39. 39.
    F.X. Wang, X.F. Qiao, T. Xiong, D.G. Ma, Org. Electron. 9, 985–993 (2008)Google Scholar
  40. 40.
    H. Lee, S.W. Cho, K. Han, P.E. Jeon, C. Whang, K. Jeong, K. Cho, andY. Yi, Appl. Phys. Lett. 93, 0433081–0433083 (2008)Google Scholar
  41. 41.
    K. Kanai, K. Koizumi, S. Ouchi, Y. Tsukamoto, K. Sakanoue, Y. Ouchi, K. Seki, Org. Electron. 11, 188–194 (2010)Google Scholar
  42. 42.
    T. Matsushima, Y. Kinoshita, H. Murata, Appl. Phys. Lett. 91, 2535041–2535043 (2007)Google Scholar
  43. 43.
    D.D. Zhang, J. Feng, L. Chen, H. Wang, Y.F. Liu, Y. Jin, Y. Bai, Y.Q. Zhong, H.B. Sun, IEEE J. Quantum Electron. 47, 591–596 (2011)Google Scholar
  44. 44.
    D. Dastan, N. Chaure, M. Kartha, J. Mater. Sci. 28, 7784–7796 (2017)Google Scholar
  45. 45.
    D. Dastan, P.U. Londhe, N.B. Chaure, J. Mater. Sci. 25, 3473–3479 (2014)Google Scholar
  46. 46.
    D. Dastan, N.B. Chaure, Int. J. Mater. Mech. Manuf. 2(1), 21–24 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Ayobi
    • 1
  • S. N. Mirnia
    • 1
  • M. Rezaee Roknabadi
    • 2
  • A. Bahari
    • 1
    Email author
  1. 1.Department of Physic, Faculty of Basic ScienceUniversity of MazandaranBabolsarIran
  2. 2.Department of Physic, Faculty of ScienceFerdowsi University of MashhadMashhadIran

Personalised recommendations