Advertisement

Investigation of temperature variant dielectric and conduction behaviour of strontium modified BaBi4Ti4O15 ceramic

  • T. BadapandaEmail author
  • P. Nayak
  • S. R. Mishra
  • R. Harichandan
  • Priyadarshi K. Ray
Article
  • 54 Downloads

Abstract

The manuscript presents the systematic analysis of structural, dielectric and conduction behaviour of strontium doped of BaBi4Ti4O15 (BSBT) ceramics, synthesized by solid-state route. The structural analysis of 4-layered Aurivillius structure with orthorhombic symmetry of BSBT compounds were studied by X-ray diffraction. The surface morphologies obtained by scanning electron microscope confirms random orientation of plate-like grains with an enhancement of grain size due to Sr modification. Raman spectroscopy analysis shows shifting of peak position due to modification which is strongly correlated to the orthorhombic distortion. The dielectric behavior with response of temperature shows shifting of phase transition temperature (Tc) to higher temperature and decrements of dielectric constant with increasing Sr-content. The thermal variation of conduction behavior in all composition shows negative temperature coefficient of resistance behaviour. The temperature sensitivity coefficients for all composition were calculated using standard equations. Arrhenius equation was used to calculate the activation energies which suggested that oxygen vacancy is basically accountable for conduction behavior. The combination of high resistivity, temperature sensitivity coefficient β and high activation energy suggests that the SBBT ceramics is more extensive towards wide temperature range application.

Notes

Acknowledgements

One of the Author (T. Badapanda) acknowledges the financial support from the Council of Scientific and Industrial Research Grant No. 80(0084)/14/EMR-II.

References

  1. 1.
    T. Jardiel, A.C. Caballero, M. Villegas, Aurivillius ceramics: Bi4Ti3O12-based piezoelectrics. J. Ceram. Soc. Jpn. 116, 511–518 (2008)CrossRefGoogle Scholar
  2. 2.
    S. Ikegami, I. Ueda, Piezoelectricity in ceramics of ferroelectric bismuth compound with layer structure. Jpn. J. Appl. Phys. 13, 1572–1577 (1974)CrossRefGoogle Scholar
  3. 3.
    S. Zhang, F. Yu, Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94, 3153–3170 (2011)CrossRefGoogle Scholar
  4. 4.
    C. A-Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374, 627–629 (1995)CrossRefGoogle Scholar
  5. 5.
    J.F. Scott, Ferroelectric memories (Springer, Berlin, 2000)CrossRefGoogle Scholar
  6. 6.
    A. Ando, T. Sawada, H. Ogawa, M. Kimura, Y. Sakabe, Fine-tolerance resonator applications of bismuth-layer-structured ferroelectric ceramics. Jpn. J. Appl. Phys. 41, 7057–7061 (2002)CrossRefGoogle Scholar
  7. 7.
    T. Kobayashi, Y. Noguchi, M. Miyayama, Enhanced spontaneous polarization in superlattice-structured Bi4Ti3O12–BaBi4Ti4O15 single crystals. Appl. Phys. Lett. 86, 012907 (2005)CrossRefGoogle Scholar
  8. 8.
    I. Pribosic, D. Makovec, M. Drofenik, Electrical properties of donor- and acceptor-doped BaBi4Ti4O15. J. Eur. Ceram. Soc. 21, 1327–1331 (2001)CrossRefGoogle Scholar
  9. 9.
    J.D. Bobic, M.M. Vijatovic, S. Greicius, J. Banys, B.D. Stojanovic, Dielectric and relaxor behavior of BaBi4Ti4O15 ceramics. J. Alloys Compd. 499, 221–226 (2010)CrossRefGoogle Scholar
  10. 10.
    P. Nayak, K. Mitra, S. Panigrahi, Electrical and optical properties of four-layered perovskite ferroelectric ABi4Ti4O15 (with A = Sr, Ba, Ca). Mater. Lett. 216, 54–57 (2018)CrossRefGoogle Scholar
  11. 11.
    B.J. Kennedy, Q.D. Zhou, Y. Ismunandar, K. Kubota, Kato, Cation disorder and phase transitions in the four-layer ferroelectric Aurivillius phases ABi4Ti4O15 (A = Ca, Sr, Ba, Pb). J. Solid State Chem. 181, 1377–1386 (2008)CrossRefGoogle Scholar
  12. 12.
    J.D. Bobić, R.M. Katiliute, M. Ivanov, N.I. Ilić, A.S. Dzunuzović, M.M.V. Petrović, J. Banys, B.D. Stojanović, Influence of tungsten doping on dielectric, electrical and ferroelectric behavior of BaBi4Ti4O15 ceramics. Solid State Commun. 702, 619–625 (2017)Google Scholar
  13. 13.
    C.L. Diao, J.B. Xua, H.W. Zheng, L. Fang, Y.Z. Gu, W.F. Zhang, Dielectric and piezoelectric properties of cerium modified BaBi4Ti4O15 ceramics. Ceram. Int. 39, 6991–6995 (2013)CrossRefGoogle Scholar
  14. 14.
    P. Fang, Z. Xi, W. Long, X. Li, S. Chen, Structural and dielectric relaxor behaviour of Ba1–xNdxBi4Ti4O15 ceramics. Solid State Commun. 231–232, 1–5 (2016)CrossRefGoogle Scholar
  15. 15.
    C.L. Diao, H. Li, Z. Chen, H.W. Zheng, Effect of samarium substitution on the dielectric and ferroelectric properties of BaBi4-xSmxTi4O15 ceramics. Ceram. Int. 42, 621–626 (2016)CrossRefGoogle Scholar
  16. 16.
    T. Badapanda, R. Harichandan, T. Bheesma Kumar, S. Parida, S.S. Rajput, P. Mohapatra, S. Anwar, R. Ranjan, Improvement in dielectric and ferroelectric property of dysprosium doped barium bismuth titanate ceramic. J. Mater. Sci. Mater. Electron. 27, 7211–7221 (2016)CrossRefGoogle Scholar
  17. 17.
    J.D. Bobic´, M.M.V. Petrovic´, J. Banys, B.D. Stojanovic, Electrical properties of niobium doped barium bismuth-titanate ceramics. Mater. Res. Bull. 47, 1874–1880 (2012)CrossRefGoogle Scholar
  18. 18.
    E. Venkata Ramana, M.P.F. Graça, M.A. Valente, T. Bhima, Sankaram, Improved ferroelectric and pyroelectric properties of Pb-doped SrBi4Ti4O15 ceramics for high temperature applications. J. Alloys Compd. 583, 198–205 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Kumar, S. Kundu, D.A. Ochoa, J.E. Garcia, K.B.R. Varma, Raman scattering, microstructural and dielectric studies on Ba1–xCaxBi4Ti4O15, ceramics. Mater. Chem. Phys. 136, 680–687 (2012)CrossRefGoogle Scholar
  20. 20.
    A. Khokhar, P.K. Goyal, O.P. Thakur, K. Sreenivas, Effect of excess of bismuth doping on dielectric and ferroelectric properties of BaBi4Ti4O15. Ceram. Int. 41, 4189–4198 (2015)CrossRefGoogle Scholar
  21. 21.
    T. Badapanda, R. Harichandan, T.B. Kumar, S.R. Mishra, S. Anwar, Dielecric relaxation and conduction mechanism of dysprosium doped barium bismuth titanate Aurivillius ceramics. J Mate. Sci. Mater. Electron. 28(3), 2775–2787 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Kojima, R. Imaizumi, S. Hamazaki, M. Takashige, Raman scattering study of bismuth layer-structure ferroelectrics. Jpn. J. Appl. Phys. 33, 5559–5564 (1994)CrossRefGoogle Scholar
  23. 23.
    M. Reddyprakash, S.K. Rout, A. Satapathy, T.P. Sinha, S.Md. Sariful, Dielectric and ferroelectric properties of samarium substituted BaBi4Ti4O15 Aurivillius oxides. Ceram. Int. 42, 8798–8803 (2016)CrossRefGoogle Scholar
  24. 24.
    M. Verma, A. Tanwar, K. Sreenivas, Influence of lone pair on structural and electrical properties of Sb substituted Bismuth layered SrBi2Nb2O9 ceramics. Mater. Chem. Phys. 209, 159–164 (2018)CrossRefGoogle Scholar
  25. 25.
    J.A. Horn, S.C. Zhang, U. Selvaraj, G.L. Messing, S. Trolier-McKinstry, Templated grain growth of textured bismuth titanate. J. Am. Ceram. Soc. 82, 921–926 (1999)CrossRefGoogle Scholar
  26. 26.
    P.S. Dobal, R.S. Katiyar, Studies on ferroelectric perovskites and Bi-layered compounds using micro-Raman spectroscopy. J. Raman Spectrosc. 33, 405–423 (2002)CrossRefGoogle Scholar
  27. 27.
    Z. Lazarević, N. Romčević, J.D. Bobić, M.J. Romčević, Z. Dohčevi-Mitrović, B.D. Stojanović, Study on bi-layered ceramics powders prepared by the mechano-chemical synthesis. J. Alloys Compd. 486, 848–852 (2009)CrossRefGoogle Scholar
  28. 28.
    T. Badapanda, R.K. Harichandan, A. Mishra, S. Anwar, Relaxor ferroelectric behavior of BaBi4Ti4O15 aurivillius ceramic. J. Adv. Dielectr. 3, 1350013 (2013)CrossRefGoogle Scholar
  29. 29.
    G.Z. Liu, C. Wang, H.S. Gu, H.B. Lu, Raman scattering study of La-doped SrBi2Nb2O9 ceramics. J. Phys. D Appl. Phys. 40, 7817–7820 (2007)CrossRefGoogle Scholar
  30. 30.
    B.J. Kennedy, Y. Kubota, B.A. Hunter, Ismunandar, K. Kato, Structural phase transition in the layered. Solid State Commun. 126, 653–658 (2003)CrossRefGoogle Scholar
  31. 31.
    D.Y. Suárez, I.M. Reaney, W.E. Lee, Relation between tolerance factor and Tc in Aurivillius compounds. J. Mater. Res. 16, 3139–3149 (2001)CrossRefGoogle Scholar
  32. 32.
    I.M. Reaney, E.L. Colla, N. Setter, Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor. Jpn. J. Appl. Phys. 1 33, 3984–3990 (1994)CrossRefGoogle Scholar
  33. 33.
    S.M. Pilgrim, A.E. Sutherland, S.R. Winzer, Diffuseness as a useful parameter for relaxor ceramics. J. Am. Ceram. Soc. 73, 3122–3125 (1990)CrossRefGoogle Scholar
  34. 34.
    A. Khokhar, M.L.V. Mahesh, A.R. James, P.K. Goyal, K. Sreenivas, Sintering characteristics and electrical properties of BaBi4Ti4O15 ferroelectric ceramics. J. Alloys Compd. 581, 150–159 (2013)CrossRefGoogle Scholar
  35. 35.
    H. Hao, H.X. Liu, M.H. Cao, X.M. Min, S.X. Ouyang, Study of A-site doping of SrBi4Ti4O15 Bi-layered compounds using micro-Raman spectroscopy. J. Appl. Phys. A 85, 69–73 (2006)CrossRefGoogle Scholar
  36. 36.
    E. Ah Dhahri, E.K. Dhahri, Hlil, Electrical conductivity and dielectric behaviour of nanocrystalline, La0.6Gd0.1Sr0.3Mn0.75Si0.25O3. RSC Adv. 8, 9103–9111 (2018)CrossRefGoogle Scholar
  37. 37.
    A.C. Jardiel, M. Caballero, Villegas, Electrical properties in WO3 doped Bi4Ti3O12 materials. J. Eur. Ceram. Soc. 27, 4115–4119 (2007)CrossRefGoogle Scholar
  38. 38.
    B.H. Park, S.J. Hyun, S.D. Bu, T.W. Noh, J. Lee, H.D. Kim, T.H. Kim, W. Jo, Appl. Phys. Lett. 74, 1907–1909 (1999)CrossRefGoogle Scholar
  39. 39.
    P.M.O. Silva, T.S.M. Fernandes, R.M.G. Oliveira, M.A.S. Silva, A.S.B. Sombra, Radiofrequency and microwave properties study of the electroceramic BaBi4Ti4O15. Mater. Sci. Eng. B 182, 37–44 (2014)CrossRefGoogle Scholar
  40. 40.
    M.L. Singla, S. Sharma, B. Raj, V.R. Harchekar, Characterization of transition metal oxide ceramic material for continuous thermocouple and its use as NTC fire wire sensor. Sens. Actuat. A Phys. 120, 337–342 (2005)CrossRefGoogle Scholar
  41. 41.
    K. Park, J.K. Lee, J.G. Kim, S. Nahm, Improvement in the electrical stability of Mn– Ni–Co–O NTC thermistors by substituting Cr2O3 for Co3O4. J. Alloys Compd, 437(1–2) 211–214 (2007)CrossRefGoogle Scholar
  42. 42.
    Y. Xinyu Liu, Luo, X. Li, Electrical properties of BaTiO3-based NTC ceramics doped by BaBiO3 and Y2O3. J. Alloy. Compd. 459(1–2) 45–50 (2008)Google Scholar
  43. 43.
    H.M. Yao, W. Luo, P.H. Yang, C.S. Chen, Negative temperature coefficient material with low thermal constant and high resistivity for low-temperature thermistor applications. J. Am. Ceram. Soc. 92, 2682–2686 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • T. Badapanda
    • 1
    Email author
  • P. Nayak
    • 2
  • S. R. Mishra
    • 3
  • R. Harichandan
    • 4
  • Priyadarshi K. Ray
    • 5
  1. 1.Department of PhysicsC.V. Raman College of EngineeringBhubaneswarIndia
  2. 2.Department of PhysicsIndian Institute of TechnologyBhubaneswarIndia
  3. 3.Department of ChemistryC.V. Raman College of EngineeringBhubaneswarIndia
  4. 4.Department of PhysicsCenturion University of Technology & ManagementBhubaneswarIndia
  5. 5.Institute of Life SciencesBhubaneswarIndia

Personalised recommendations