Advertisement

High performance polyetherketone-hexagonal boron nitride nanocomposites for electronic applications

  • A. M. Patki
  • R. K. GoyalEmail author
Article
  • 6 Downloads

Abstract

High-performance polymeric nanocomposites have been increasingly demanded by many cutting-edge fields. In present work, high-performance polymeric nanocomposites based on polyetherketone polymer as a matrix and hexagonal boron nitride (h-BN) nanopowder as reinforcement were successfully fabricated using planetary ball milling followed by hot pressing. The effects of h-BN loading (0–30 wt%) on the thermal stability, linear coefficient of thermal expansion (CTE), Vickers microhardness, and storage modulus/loss modulus were systematically investigated and discussed. Scanning electron microscopy showed good dispersion of h-BN nanoparticles into the matrix. The thermal stability of the nanocomposites was found more than 560 °C which is higher than that of commercial epoxy/E-glass based substrate. The linear CTE of the 30 wt% h-BN nanocomposite decreased approximately 20% compared to that of pure matrix. The microhardness and storage modulus of the nanocomposites were found to increase approximately 38% and 70%, respectively. Moreover, the glass transition temperature of the nanocomposites was increased compared to that of pure matrix.

Notes

Acknowledgements

The authors are thankful to Gharda Chemicals Ltd., India for providing PEK powder and to Prof. Balaji Sontakke, Research Scholar, Production Engineering, College of Engineering Pune, India for helping to carry out the DMA test.

References

  1. 1.
    M. Joshi, A. Goyal, S. Patil, R.K. Goyal, J. Appl. Polym. Sci. 133, 44409 (2016)Google Scholar
  2. 2.
    K.V. Mahesh, S. Balanand, R. Raimond, A. Peer Mohamed, S. Ananthakumar, Mater. Des. 63, 360 (2014)CrossRefGoogle Scholar
  3. 3.
    M.T. Sebastian, H. Jantunen, Int. J. Appl. Ceram. Technol. 7, 415 (2010)Google Scholar
  4. 4.
    L.J. Fang, C. Wu, R. Qian, L.Y. Xie, K. Yang, P.K. Jiang, RSC Adv. 4, 21010 (2014)CrossRefGoogle Scholar
  5. 5.
    R. Jan, P. May, A.P. Bell, A. Habib, U. Khan, J.N. Coleman, Nanoscale 6, 4889 (2014)CrossRefGoogle Scholar
  6. 6.
    F. Liu, X.S. Mo, H.B. Gan, T.Y. Guo, X.B. Wang, B. Chen, J. Chen, S.Z. Deng, N.S. Xu, T. Sekiguchi, D. Golberg, Y. Bando, Sci. Rep. 4, 4211 (2014)CrossRefGoogle Scholar
  7. 7.
    C.Y. Zhi, Y. Bando, C.C. Tang, H. Kuwahara, D. Golberg, Adv. Mater. 21, 2889 (2009)CrossRefGoogle Scholar
  8. 8.
    C.Y. Zhi, Y.B. Xu, Y. Bando, D. Golberg, ACS Nano 5, 6571 (2011)CrossRefGoogle Scholar
  9. 9.
    B.H. Xie, X. Huang, G.J. Zhang, Compos. Sci. Technol. 85, 98 (2013)CrossRefGoogle Scholar
  10. 10.
    J.H. Yu, X.Y. Huang, C. Wu, X.F. Wu, G.L. Wang, P.K. Jiang, Polymer 53, 471 (2012)CrossRefGoogle Scholar
  11. 11.
    T. Fujihara, H.-B. Cho, T. Nakayama, T. Suzuki, W.H. Jiang, H. Suematsu, H.D. Kim, K. Niihara, J. Am. Ceram. Soc. 95, 369 (2012)CrossRefGoogle Scholar
  12. 12.
    L. Huang, P. Zhu, G. Li, F. Zhou, D. Lu, R. Sun, C. Wo, J. Mater. Sci. 26, 3564 (2015)Google Scholar
  13. 13.
    D.-H. Cho, J.-S. Kim, S.-H. Kwona, C. Lee, Y.-Z. Lee, Wear 302, 981 (2013)CrossRefGoogle Scholar
  14. 14.
    Z. Lin, A. Mcnamara, Y. Liu, K.-S. Moon, C.-P. Wong, Compos. Sci. Technol. 90, 123 (2014)CrossRefGoogle Scholar
  15. 15.
    J. Wang, D. Zhao, X. Zou, L. Mao, L. Shi, J. Mater. Sci.: Mater. Electron. 28, 12984 (2017)Google Scholar
  16. 16.
    L. Weng, H. Wang, X. Zhang, L. Liu, H. Zhang, J. Mater. Sci. 29, 14267 (2018)Google Scholar
  17. 17.
    X. Peng, X. Liu, P. Qu, B. Yang, J. Mater. Sci. 29, 16799 (2018)Google Scholar
  18. 18.
    Q. Chi, Y. Hao, T. Zhang, C. Zhang, Q. Chen, J. Mater. Sci. 29, 19678 (2018)Google Scholar
  19. 19.
    Y. Gao, A. Gu, Y. Jiao, Y. Yang, G. Liang, J.T. Hu, W. Yao, L. Yuan, Polym. Adv. Technol. 23, 919 (2012)CrossRefGoogle Scholar
  20. 20.
    R.K. Goyal, A. N.Tiwari, U.P. Mulik, Y.S. Negi, J. Phys. D 41, 085403 (2008)CrossRefGoogle Scholar
  21. 21.
    J. Chameswary, M.T. Sebastian, J. Mater. Sci. 26, 4629 (2015)Google Scholar
  22. 22.
    L. Li, Y. Chen, Z.H. Stachurski, Prog. Nat. Sci. 23, 170 (2013)CrossRefGoogle Scholar
  23. 23.
    K.K. Chawla, Composite Materials: science and Engineering (Springer, New York, London, 2012)CrossRefGoogle Scholar
  24. 24.
    D.J. Blundell, V. Bayon, Polymer 34, 1354 (1993)CrossRefGoogle Scholar
  25. 25.
    L. Torre, J.M. Kenny, A. Recca, V. Siracusa, A. Tarzia, A. Maffezzoli, J. Therm. Anal. Calorim. 61, 565 (2000)CrossRefGoogle Scholar
  26. 26.
    V. Balaji, A.N. Tiwari, R.K. Goyal, Polym. Eng. Sci. 51, 509 (2011)CrossRefGoogle Scholar
  27. 27.
    M. Tai, A. Pegoretti, A. Dorigato, K. Kalaitzidou, Carbon 49, 4280 (2011)CrossRefGoogle Scholar
  28. 28.
    J. Sandler, P. Werner, M.S.P. Sheffer, V. Demchuk, V. Altsta¨dt, A.H. Windle, Composite A 33, 1033 (2002)CrossRefGoogle Scholar
  29. 29.
    R.K. Goyal, A.N. Tiwari, U.P. Mulik, Y.S. Negi, Composite A 38, 516 (2007)CrossRefGoogle Scholar
  30. 30.
    L.Q. Cortes, A. Lonjon, E. Dantras, C. Lacabanne, J. Non-Cryst. Solids 391, 106 (2014)CrossRefGoogle Scholar
  31. 31.
    H. Yan, Y. Tang, J. Su, X. Yang, Appl. Phys. A 114, 331 (2014)CrossRefGoogle Scholar
  32. 32.
    G. Tsagaropoulos, A. Eisenberg, Macromolecules 28, 6067 (1995)CrossRefGoogle Scholar
  33. 33.
    R.K. Goyal, P. Jadhav, A.N. Tiwari, J. Electron. Mater. 40, 1377 (2011)CrossRefGoogle Scholar
  34. 34.
    Electronic Materials Handbook, Packaging, vol. 1 (ASM International Handbook Committee, Materials Park, 1998)Google Scholar
  35. 35.
    R.T. Rao, J.R. Eugene, G.K. Alan, Microelectronics Packaging Handbook, Technology Drivers, Part I, 2nd edn. (Chapman and Hall, London, 1997)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Metallurgy and Materials ScienceCollege of Engineering PunePuneIndia
  2. 2.Department of Metallurgical and Materials EngineeringMalaviya National Institute of Technology JaipurJaipurIndia

Personalised recommendations