Advertisement

High frequency studies on dielectric, impedance and Nyquist properties of BaTiO3–Li0.5Fe2.5O4 composite ceramics substituted with Sm and Nb for microwave device applications

  • Ganapathi Rao GajulaEmail author
  • K. N. Chidambara Kumar
  • Lakshmi Rekha Buddiga
  • Nirupama Vattikunta
Article
  • 31 Downloads

Abstract

The BaTiO3–Li0.5Fe2.5O4 composite ceramics doped with Sm and Nb having chemical formulae (90)BaTi(1−2x)NbxSmxO3+(10)Li0.5Fe2.5O4 (x = 0, 0.05 and 0.1) were prepared using solid state reaction technique. The structural, qualitative structural information regarding functional groups, dielectric, Nyquist plots, the variation of impedance with frequency (1–10 MHz) at different temperatures, the variation of dielectric properties, A.C. conductivity and impedance with frequency between 1 MHz and 3.2 GHz at 30 °C of composites are investigated. The X-Ray diffraction peaks indicate the formation of tetragonal structure of all composites with a small amount of ferrite phase. From fourier transform infrared spectroscopy (FTIR) measurements, the presence of function groups have been identified. The dielectric studies reveal the higher value of the dielectric constant of all composites at low frequency regime due to an interfacial polarization. The dielectric constant of BTNS0.1 is higher than BTLF, BTNS0.05 which shows dispersion at low frequency region. The dielectric loss of BTLF decreases in the frequency region 80MHz–1.10 GHz. The impedance (Z′) of all composites decreases with an increase in the frequency and temperature. The impedance studies show the complex behaviour of all the composites which indicates the enhancement of AC conductivity of material at higher frequencies beyond 3 GHz. The conductivity studies of composites show dispersion characteristics among the samples and the conductivity of composites is enhanced by incorporation of Nb, Sm in BTLF composites. The radii of all semi circles decrease with increase in temperature which represents conductivity of composites increases with increase in temperature.

Notes

Acknowledgements

We would like to thank Dr. P.D Babu of UGC-DAE Consortium for Scientific Research, Mumbai center, R5-shed, BARC, Mumbai—400 085 for extending the facilities and his support. We would also like to thank Dr. V. Raghavendra Reddy and Dr. Mukul Gupta of UGC-DAE Consortium for Scientific Research, Indore for extending the facilities and their support. We also thank INUP, IITB for extending the facilities Dielectric measurements.

References

  1. 1.
    P.K. Patel, J. Rani, N. Adhlakha, H. Singh, K.L. Yadav, Enhanced dielectric properties of doped barium titanate ceramics. J. Phys. Chem. Solids 74, 545–549 (2013)Google Scholar
  2. 2.
    H. Haibo Yang, L. Wang, X. He, Yao, Hexagonal BaTiO3/Ni0.8Zn0.2Fe2O4 composites with giant dielectric constant and high permeability. Mater. Chem. Phys. 134, 777–782 (2012)Google Scholar
  3. 3.
    T. Xu, L. Chen, Z. Guo, T. Ma, Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. Phys. Chem. Chem. Phys. 18, 27026–27050 (2016)Google Scholar
  4. 4.
    T. Badapanda, S. Sarangi, S. Parida, B. Behera, B. Ojha, S. Anwar, Frequency and temperature dependence dielectric study of strontium modified Barium Zirconium Titanate ceramics obtained by mechanochemical synthesis. J. Mater. Sci.: Mater. Electron. 26(5), 3069–3082 (2015)Google Scholar
  5. 5.
    B. Luo, X. Wang, E. Tian, G. Li, L. Li, Electronic structure, optical and dielectric properties of BaTiO3/CaTiO3/SrTiO3 ferroelectric super lattices from first principles calculations. J. Mater. Chem. C 3, 8625–8633 (2015)Google Scholar
  6. 6.
    J.F. Scott, Appl. Mod. Ferroelectr. Sci. 315, 954–959 (2007)Google Scholar
  7. 7.
    X. Na Zhu, X. Chen, H. Tian, X.M. Chen, Atomic scale investigation of enhanced ferroelectricity in (Ba, Ca) TiO3. RSC Adv. 7 22587–22591 (2017)Google Scholar
  8. 8.
    Ch Rayssi, S. El.Kossi, J. Dhahri, K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1–xCo4x/3O3 (0 ≤ x ≤ 0.1) RSC Adv. 8 17139–17150 (2018)Google Scholar
  9. 9.
    S.B. Narang, D. Kaur, K. Pubby, Frequency and temperature dependence of dielectric and electric properties of Ba2 – xSm4 + 2x/3Ti8O24 with structural analysis. Mater. Sci. –Pol. 33(2), 268–277 (2015)Google Scholar
  10. 10.
    N.P. Cheremisinoff (ed.), Handbook of Ceramics and Composites, Synthesis and Properties, (Marcel Dekker Inc., New York, 1990)Google Scholar
  11. 11.
    W. Cai, C. Fu, J. Gao, X. Deng, G. Chen & Z. Lin, Effect of samarium on the microstructure, dielectric and ferroelectric properties of barium titanate ceramics. Integr. Ferroelectr. 140, 92–103 (2012)Google Scholar
  12. 12.
    W. Cai, C.L. Fu, J.C. Gao et al., Dielectric properties and microstructure of Mg doped barium titanate ceramics. Adv. Appl. Ceram. 110(3), 181–185 (2011)Google Scholar
  13. 13.
    A.K. Nath, N. Medhi, Piezoelectric properties of environmental friendly bismuth doped barium titanate ceramics. Mater. Lett. 73, 75–77 (2012)Google Scholar
  14. 14.
    Y.X. Li, X. Yao, X.S. Wang et al., Studies of dielectric properties of rare earth (Dy, Tb, Eu) doped barium titanate sintered in pure nitrogen. Ceram. Int. 38(S1), S29–S32 (2011)Google Scholar
  15. 15.
    V.V. Mitic, Z.S. Nikolic, V.B. Pavlovic et al., Influence of rare-earth dopants on barium titanate ceramics microstructure and corresponding electrical properties. J. Am. Ceram. Soc. 93(1), 132–137 (2010)Google Scholar
  16. 16.
    Y. Yuan, S.R. Zhang, X.H. Zhou, B. Tang, Effects of Nb2O5 doping on the microstructure and the dielectric temperature characteristics of barium titanate. J. Mater. Sci. 44(14), 3751–3757 (2009)Google Scholar
  17. 17.
    M.M. Vijatovi´c Petrovi´c, J.D. Bobi´c, T. Ramoˇska et al., Antimony doping effect on barium titanate structure and electrical properties. Ceram. Int. 37(7), 2669–2677 (2011)Google Scholar
  18. 18.
    M.C. Ferrarelli, C.C. Tan, D.C. Sinclair, Ferroelectric, electrical, and structural properties of Dy and Sc co-doped BaTiO3. J. Mater. Chem. 21(17), 6292–6299 (2011)Google Scholar
  19. 19.
    Y.-P. Fua, D.-S. Hung, Y.-D. Yao, Microwave properties of chromium-substituted lithium ferrite. Ceram. Int. 35(6), 2179–2184 (2009)Google Scholar
  20. 20.
    A. Verma, T.C. Goyal, R.G. Mindiretta, R.G. Gupta, High-resistivity nickel–zinc ferrites by the citrate precursor method. J. Magn. Magn. Mater. 192(2), 271–276 (1999)Google Scholar
  21. 21.
    M.A. El Hiti, Dielectric behavior and ac electrical conductivity of Zn-substituted Ni-Mg ferrites. J. Magn. Magn. Mater. 164(1–2), 187–196 (1996)Google Scholar
  22. 22.
    Seema Verma, P.A. Joy, Magnetic properties of super paramagnetic lithium ferrite nanoparticles. J. Appl. Phys. 98(12), 124312–124319 (2005)Google Scholar
  23. 23.
    S.B. Narang, S. Bahel, Low loss dielectric ceramics for microwave applications: a review. J. Ceram. Process. Res. 11(3), 316–321 (2010)Google Scholar
  24. 24.
    S. B. Narang, D. Kaur, K. Pubby, Effect of Substitution of Samarium and Lanthanum on Dielectric and Electrical Properties of Barium Titanate. Ferroelectrics 486, 74–85 (2015)Google Scholar
  25. 25.
    J. Li, H. Kakemoto, S. Wada, T. Tsurumi, Dielectric properties of BaTiO3-based ceramics measured up to GHz region. J. Electroceram. 21, 427–430 (2008)Google Scholar
  26. 26.
    P. Padmini, T.R. Taylor, M.J. Lefevre, A.S. Nagre, R.A. York, J.S. Speck, Realization of high tunability barium strontium titanate thin films by rf magnetron sputtering. Appl. Phys. Lett. 75, 3186–3188 (1999)Google Scholar
  27. 27.
    Y. Gim, T. Hudson, Y. Fan, C. Kwon, T. Findikoglu, B.J. Gibbons, B.H. Park, Q.X. Jia, Microstructure and dielectric properties of Ba1 – xSrxTiO3Ba1–xSrxTiO3 films grown on LaAlO3 substrates. Appl. Phys. Lett. 77, 1200–1202 (2000)Google Scholar
  28. 28.
    J. Im, O. Auciello, P.K. Baumann, S.K. Streiffer, D.Y. Kaufman, A.R. Krauss, Composition-control of magnetron-sputter-deposited (BaxSr1–x)Ti1 + yO3 + z thin films for voltage tunable devices. Appl. Phys. Lett. 76, 625–627 (2000)Google Scholar
  29. 29.
    G.RaoG.L.R. Buddiga, K.N. Chidambara Kumar, M. Dasari, Influence of Sm and Nb on the structural, electric, magnetic and magneto-electric properties of BaTiO3-Li0.5Fe2.5O4 composite ceramics grown by the conventional solid state technique. J. Mater. Sci.: Mater. Electron. (2018).  https://doi.org/10.1007/s10854-018-0394-1 Google Scholar
  30. 30.
    C.M.B. Henderson, J.M. Charnock, G. Cressey, D.T. Griffen, An EXAFS study of the local structural environments of Fe, Co, Zn and Mg in natural and synthetic staurolites. Miner. Mag. 61, (408) 613–625 (1997)Google Scholar
  31. 31.
    D.M. Sherman, The electronic structures of manganese oxide minerals. Am. Mineral. 69, 788–799 (1984)Google Scholar
  32. 32.
    A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, Structural analysis of Y3+-doped Mg–Cd ferrites prepared by oxalate co-precipitation method. Mater. Chem. Phys. 114, 505–510 (2009)Google Scholar
  33. 33.
    N.M. Deraz, Fabrication, characterization and magnetic behaviour of alumina-doped zinc ferrite nano-particles. J. Anal. Appl. Pyrol. 91(1), 48–54 (2011)Google Scholar
  34. 34.
    A. Abdel Aal, T.R. Hammad, M. Zawrah, I.K. Battisha, A.B. Abou Hammad, FTIR Study of Nanostructure Perovskite BaTiO3 Doped with Both Fe3+ and Ni2+ Ions Prepared by Sol-Gel Technique, Acta Phys. Pol. A, 126 (6) (2014) 1318–1322Google Scholar
  35. 35.
    N. Ashutosh Mishra, S. Mishra, K.M. Bisen, Jarabana, Frequency and temperature dependent dielectric studies of BaTi0.96Fe0.04O3. International Conference on Recent Trends in Physics (ICRTP 2014)Google Scholar
  36. 36.
    R. Sharma, V. Singh, R.K. Kotnala, R.P. Tandon, Investigation on the effect of ferrite content on the multiferroic properties of (1-x) Ba0.95Sr0.05TiO3 - (x) Ni0.7Zn0.2Co0.1Fe2O4 ceramic composite. Mater. Chem. Phys. 160, 447–455 (2015)Google Scholar
  37. 37.
    C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)Google Scholar
  38. 38.
    S.N. Babu, J.-H. Hsu, Y.S. Chen, J.G. Lin, Magnetoelectric response in lead-free multiferroic NiFe2O4-Na0.5Bi0.5TiO3 composites, J. Appl. Phys. 109, 07D904 1–07D904 34 (2011)Google Scholar
  39. 39.
    M. Asif Iqbal, M.U. Islama, I. Ali, M. Azhar khan, I. Sadiq, I. Ali, High frequency dielectric properties of Eu+ 3-substituted Li–Mg ferrites synthesized by sol–gel auto-combustion method. J. Alloys Compd. 586, 404–410 (2014)Google Scholar
  40. 40.
    N. Rezlescu, E. Rezlescu, Dielectric Properties of Copper Containing Ferrites. Phys. Status Solidi A. 23, 575–582 (1974)Google Scholar
  41. 41.
    C.E. Ciomaga, R. Calderone, M.T. Buscaglia, M. Viviani, V. Buscaglia, L. Mitoseriu, A. Stancu, P. Nanni, Relaxor properties of Ba(Zr,Ti)O3 ceramics. J. Optoelectron. Adv. Mater. 8(3), 944–948 (2006)Google Scholar
  42. 42.
    B. Chandra Babu, V. Naresh, B. Jayaprakash, S. Buddhudu, Structural, thermal and dielectric properties of lithium zinc silicate ceramic powders by sol-gel method. Ferroelectr. Lett. 38, 114–127 (2011)Google Scholar
  43. 43.
    B. Baruwati, K.M. Reddy, V. Sunkara, R.K. Manorama, O. Singh, J. Prakash, Tailored conductivity behavior in nanocrystalline nickel ferrite. Appl. Phys. Lett. 85(14), 2833–2835 (2004)Google Scholar
  44. 44.
    R.G. Kharabe, R.S. Devan, C.M. Kanamadi, B.K. Chougle, Dielectric properties of mixed Li-Ni-Cd ferrites. Smart Mater Struct 15, 36–39 (2006)Google Scholar
  45. 45.
    R.S. Devan, B.K. Chougule, Effect of Composition on coupled electric magnetic and dielectric properties of two phase particulate magnetoelectric composite. J. Appl. Phys. 101(1), 014109–014106 (2007)Google Scholar
  46. 46.
    M.T. Farid, I. Ahmad, S. Aman, M. Kanwal, G. Murtaza, I. Ali, I. Ahmad, M. Ishfaq, Structural, electrical and dielectric behavior of NixCo1–xPryFe2–yO4 nano-ferrites synthesized by sol-gel method. Dig. J. Nanomater. Biostruct. 10(1), 265–275 (2015)Google Scholar
  47. 47.
    M. Raghasudha, D. Ravinder, P. Veera somaiah, Influence of Cr3+ ion on the dielectric properties of nano crystalline Mg-ferrites synthesized by citrate-gel method. Mater. Sci. Appl. 4(7), 432–438 (2013)Google Scholar
  48. 48.
    S.B. Narang, D. Kaur, K. Pubby, Dielectric and impedance spectroscopy of samarium and lanthanum doped barium titanate at room temperature. Int. Sch. Sci. Res. Innov. 9(6), 667–671 (2015)Google Scholar
  49. 49.
    N. Zidi, A. Chaouchi, S. d’Astorg, M. Rguiti, C. Courtois, Dielectric and impedance spectroscopy characterizations of CuO added (Na0.5Bi0.5)0.94Ba0.06TiO3 lead-free piezoelectric ceramics. J. Alloys Compd. 590, 557–564 (2014)Google Scholar
  50. 50.
    R.-H. Yue-MingLi, X.-P. Liao, Y.-P. Jiang, Zhang, Impedance spectroscopy and dielectric properties of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 ceramics. J. Alloys Compd. 484, 961–965 (2009)Google Scholar
  51. 51.
    K.C. Verma, S.K. Tripathi, R.K. Kotnala, Surface spins enhanced magnetoelectric coefficient and impedance spectroscopy of BaFe0.01Ti0.99O3 and BaFe0.015Ti0.985O3 nanorods. Mater. Res. Bull. 68, 331–335 (2015)Google Scholar
  52. 52.
    K.C. Verma, M. Ram, J. Singh, R.K. Kotnala, Impedance spectroscopy and dielectric properties of Ce and La substituted Pb0.7Sr0.3(Fe0.012Ti0.988)O3 nanoparticles. J. Alloys Compd. 509, 4967–4971 (2011)Google Scholar
  53. 53.
    R. Poonam Kumari, S. Rai, Sharma†, M.A. Valente, Dielectric, electrical conduction and magnetic properties of multiferroic Bi0.8Tb0.1Ba0.1Fe0.9Ti0.1O3 perovskite compound. J Adv. Dielectr. 7(5), 1750034 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ganapathi Rao Gajula
    • 1
    Email author
  • K. N. Chidambara Kumar
    • 1
  • Lakshmi Rekha Buddiga
    • 2
  • Nirupama Vattikunta
    • 1
  1. 1.Department of PhysicsBS&H, Sree Vidyanikethan Engineering CollegeTirupatiIndia
  2. 2.Department of ChemistryAndhra UniversityVisakhapatnamIndia

Personalised recommendations