Blue-green light emitting inherent luminescent glasses synthesized from agro-food wastes

  • Shivani Punj
  • K. SinghEmail author


Silica-phosphate glasses are synthesized using various agro-food wastes as resource materials instead of minerals. These glasses are synthesized using the melt-quench technique. These as prepared glasses are characterized by X-ray diffraction analysis, Energy dispersive spectroscopy, Fourier transform infrared spectroscopy, UV–Visible and photoluminescence techniques. The X-ray diffraction showed the amorphous nature of the prepared samples. The presence of elemental composition and inherent trace elements such as TiO2, Fe2O3 determined using energy dispersive spectroscopy. The density and vicker micro hardness of these glasses have been increased by increasing of egg shell powder contents (CaO). The hardness of the present samples is higher than earlier reported similar type of glasses. The presences of Si–O–Ca and Al–O–Ca groups in the glass are identified. The presences of different silicate-phosphate units are also observed. The optical band gap of these glasses lies in the range 3.63–3.84 eV. The refractive index and photoluminescence of theses glasses have been also increased by increasing of CaO content in the glasses. TiO4 is a “self activating” anion which helps to improve the luminescent quality of these glasses. The color purity is 66% of these glasses. The presences of inherent trace element oxides are responsible for good photoluminescence properties of the present glasses.



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Authors are very thankful to SAI labs for carrying out the EDS of the samples. The author is also thankful to Dr. Devinder Kumar for Vickers hardness measurement and Gaurav Sharma for their consistent guidance and support to carry out this work.


  1. 1.
    R.A. Patil, U.B. Deshannavar, Dry sugarcane leaves: renewable biomass resources for making briquettes. Int. J. Eng. Res. Technol. 10, 232–235 (2017)Google Scholar
  2. 2.
    S. Chandershekhar, K.G. Satyanarayana, P.N. Pramada, P. Raghaan, T.N. Gupta, Properties and applications of reactive silica from rice husk-an overview. J. Mater. Sci. 8, 3159–3168 (2003)CrossRefGoogle Scholar
  3. 3.
    S. Kumar, P. Sangwan, R.M.V. Dhankhar, S. Bidra, A review: utilization of rice husk and their ash. Res. J. Chem. Environ. Sci. 1, 126–129 (2013)Google Scholar
  4. 4.
    K. Mohanta, D. Kumar, O. Parkash, Properties and industrial applications of rice husk: a review. Int. J. Emerg. Technol. Adv. Eng. 2, 86–90 (2012)Google Scholar
  5. 5.
    M.Z. Norashikin, M.Z. Ibrahim, The potential of natural waste (corn husk) for production of environmental friendly biodegradable film for seedling world. Acad. Sci. Eng. Technol. 3, 1802–1806 (2009)Google Scholar
  6. 6.
    I.A. Cornejo, S. Ramalingam, J.S. Fish, I.E. Reimanis, Hidden treasures: turning food waste into glass. Am. Ceram. Soc. Bull. 93, 24–27 (2014)Google Scholar
  7. 7.
    R. Embong, N. Shafiq, A. Kusbiantor, Silica extraction and incineration process of sugarcane aggase ash as poolanis materials: a review. J. Eng. Appl. Sci. 11, 7304–7308 (2016)Google Scholar
  8. 8.
    K.G. Patel, R.R. Shettigar, N.M. Misra, Recent advance in silica production technologies from agricultural waste stream:Review. J. Adv. Agri. Technol. 4, 274–279 (2017)Google Scholar
  9. 9.
    R.K. Brow, Review: the structure of simple phosphate glasses. J. Non-Cryst. Solids 1, 1–28 (2000)CrossRefGoogle Scholar
  10. 10.
    N.G. Boetti, D. Pugliese, E. Ceci-Ginistrelli, J. Lousteau, D. Janner, D. Milanese, Highly doped phosphate glass fibers for compact lasers and amplifiers. Appl. Sci. (2017). Google Scholar
  11. 11.
    T.L. Arinzeh, T. Tran, J. McAlary, G. Daculsi, A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials 26, 3631–3638 (2005)CrossRefGoogle Scholar
  12. 12.
    W. Ahmina, M. El. Moudane, M. Zriouil, M. Taibi, Role of manganese in 20K2O-xMnO-(80-x)P2O5 phosphate glasses and model of structural units. J. Mater. Environ. Sci. 7, 694–699 (2016)Google Scholar
  13. 13.
    Z. Teixeira, O.L. Alves, I.O. Mazali, Structure, thermal behavior, chemical durability, and optical properties of the Na2O-Al2O3-TiO2-Nb2O5-P2O5 glass system. J. Am. Ceram. Soc. 90, 256–263 (2007)CrossRefGoogle Scholar
  14. 14.
    I. Audulrahman, H.I. Tijani, B.A. Mohammed, H. Saidu, H. Yusuf, M.N. Jibrin, S. Mohammed, From garbage to biomaterials: an overview on egg shell based hydroxyapatite. J. Mater. (2014). Google Scholar
  15. 15.
    S.S. Danewalia, G. Sharma, S. Thakur, K. Singh, Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics. Sci. Rep. 6, 1–12 (2016)CrossRefGoogle Scholar
  16. 16.
    G. Sharma, S.K. Arya, K. Singh, Optical and thermal properties of glasses and glass-ceramics derived from agricultural wastes. Ceram. Int. 44, 947–952 (2018)CrossRefGoogle Scholar
  17. 17.
    L.L. Devi, C. Basavapoornima, V. Venkatramu, P. Babu, C.K. Jayasankar, Synthesis of Ca2SiO4:Dy3+ phosphors from agricultural waste for solid state lighting applications. J. Ceram. Int. 43, 16622–16627 (2017)CrossRefGoogle Scholar
  18. 18.
    L.L. Devi, C.K. Jayasankar, Spectroscopic investigations on high efficiency deep red-emitting of Ca2SiO4:Eu3+ phosphors synthesized from agricultural waste. J. Ceram. Int. (2018). Google Scholar
  19. 19.
    B. Aktas, M. Albaskrara, S. Yalcin, K. Dogru, Optical properties of soda-lime-silica glasses doped with peanut shell powder. Acta Phys. Pol. A 131, 57–61 (2016)Google Scholar
  20. 20.
    B. Aktas, M. Albaskrara, K. Dogru, S. Yalcin, Optical Properties of Soda-lime-silica glasses doped with eggshell powder. Acta Phys. Pol. A 132, 442–444 (2017)CrossRefGoogle Scholar
  21. 21.
    S.R. Teixeira, A.E. Soua, C.L. Carvialho, V.C.S. Reynoso, M. Romero, J.M. Rincon, Characterization of a wollastonite glass-ceramic material prepared using sugar cane baggase ash (SCBA) as one of the raw materials. Mater. Charact. 98, 209–214 (2014)CrossRefGoogle Scholar
  22. 22.
    S. Singh, K. Singh, Nanocrystalline glass ceramics: structural, physical and optical properties. J. Mol. Struct. 1081, 211–216 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Balamurugan, G. Balossier, J. Michel, S. Kannan, H. Benhayoune, A.H.S. Rebelo, J.M.F. Ferreira, Sol gel derived SiO2‐CaO‐MgO‐P2O5 bioglass system—Preparation and in vitro characterization. J. Biomed. Mater. Res. B (2007) 546–553CrossRefGoogle Scholar
  24. 24.
    A.M. Efimov, V.G. Pogareva, IR absorption spectra of vitreous silica and silicate glasses: The nature of bands in the 1300 to 5000 cm– 1. Region. Chem. Geol. 229, 198–217 (2006)CrossRefGoogle Scholar
  25. 25.
    K. Singh, I. Bala, V. Kumar, Structural, optical and bioactive properties of calcium borosilicate glasses. Ceram. Int. 35, 3401–3406 (2009)CrossRefGoogle Scholar
  26. 26.
    H.R.A. Mooghari, A. Nemati, B.E. Yekta, Z. Hamnabar, The effects of SiO2 and K2O on glass forming ability and structure of CaO-TiO2-P2O5 glass system. Ceram. Int. 38, 3281–3290 (2012)CrossRefGoogle Scholar
  27. 27.
    G. Melinte, L. Baia, V. Simon, Hydrogen peroxide versus water synthesis of bioglass-nanocrystalline hydroxyapatite composites. J. Mater. Sci. 46, 7393–7400 (2011)CrossRefGoogle Scholar
  28. 28.
    R. Hussin, M.A. Salim, N.S. Alias, M.S. Abdullah, S. Abdullah, S.A.A. Fuzi, S. Hamdan, M.N.M. Yusuf, Vibrational studies of calcium magnesium ultra phosphate glasses. J. Fund. Sci. 5, 41–53 (2009)Google Scholar
  29. 29.
    A.M. Handke, W. Mozgawa, M. Nocun, Specific features of the IR spectra of silicate glasses. J. Mol. Struct. 325, 129–136 (1994)CrossRefGoogle Scholar
  30. 30.
    R.P. Smith, The relationship of force constant and bond length. J. Phys. Chem. 60(9), 1293–1296 (1956)CrossRefGoogle Scholar
  31. 31.
    M.M. Smedskjaer, M. Jensen, Y. Yue, Effect of thermal history and chemical composition on hardness of silicate glasses. J. Non-cryst. Solids. 356, 893–897 (2010)CrossRefGoogle Scholar
  32. 32.
    J.E. Shelby, Introduction to Glass Science and Technology, 2nd edn. (The Royal Society of Chemistry, UK, 2005)Google Scholar
  33. 33.
    G.V. Rao, H.D. Shashikala, Optical and mechanical properties of calcium phosphate glasses. Glass Phys. Chem. 40, 303–309 (2014)CrossRefGoogle Scholar
  34. 34.
    P. Jha, K. Singh, Effect of MgO on bioactivity, hardness, structural and optical properties of SiO2-K2O-CaO-MgO glasses. Ceram. Int. 42, 436–444 (2016)CrossRefGoogle Scholar
  35. 35.
    P. Kubelka, F. Munk, Ein Beitrag zur Optik der Far- banstriche. Zeits. f. techn, Physik 12, 593–601 (1931)Google Scholar
  36. 36.
    J.A. Duffy, The glass is doped with ZnO to tune the glass absorption glasses. Phys. Chem. 42, 151 (2001)Google Scholar
  37. 37.
    F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)CrossRefGoogle Scholar
  38. 38.
    V. Dimitrov, S. Sumio, Electronic oxide polarizability and optical basicity of simple oxides. J. Appl.Phys. 79, 1736 (1996)CrossRefGoogle Scholar
  39. 39.
    A.S. Hassanien, A.A. Akl, Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures. Appl. Phys. A 124, 752 (2018)CrossRefGoogle Scholar
  40. 40.
    A. S. Hassanien, Studies on dielectric properties, Opto-electrical parameters and electronic polarizability of thermally evaporated amorphous Cd50 S50-xSe x thin films, J. Alloys Compd. 671 (2016) 566–578CrossRefGoogle Scholar
  41. 41.
    M.A. Baki, F.A. Wahab, A.A. Radi, F. El-Diasty, Factors affecting optical dispersion in borate glass systems. J. Phys. Chem. Solids 68, 1457–1470 (2007)CrossRefGoogle Scholar
  42. 42.
    S. Singh, K. Singh, Effect of in-situ reduction of Fe3+ on physical, structural and optical properties of calcium sodium silicate glasses and glass ceramics. J. Non-Cryst. Solids 386, 100–104 (2014)CrossRefGoogle Scholar
  43. 43.
    G.G. Siu, X.L. Wu, Y. Gu, X.M. Bao, Ultraviolet and blue emission from crystalline SiO2 coated with LiNbO3 and LiTaO3. Appl. Phys. Lett. 74, 1812–1814 (1999)CrossRefGoogle Scholar
  44. 44.
    F.D. Acapito, C. Maurizio, M.C. Paul, T. Lee, W. Blanc, Role of CaO addition in the local order around Erbium in SiO2-GeO2-P2O5 fiber performs. Mater. Sci. Eng. B. 146, 167–174 (2008)CrossRefGoogle Scholar
  45. 45.
    H.H. Kusuma, Z. Ibrahim, UV-spectroscopy and band structure of Ti: Al2O3. J. Solid State Sci. Technol. 20, 41–47 (2012)Google Scholar
  46. 46.
    C.F. Song, M.K. Lu, S.F. Wang, D. Xu, D.R. Yuan, G.J. Zhou, Blue photoluminescence of sol-gel TiO2-SiO2 glass. J. Inorg. Mater. 39, 1529–1531 (2003)Google Scholar
  47. 47.
    P. Yang, C.F. Song, M.K. Lu, D. Xu, D.R. Yuan, G.J. Zhou, The effect of alkaline earth metallic ions on the photoluminescence properties of sol-gel silica glasses. Appl. Phys. A. 74, 689–692 (2002)CrossRefGoogle Scholar
  48. 48.
    T. Smith, J. Guild, The C.I.E colorimetric standards and their use. Trans. opt. Soc. 33, 73 (1931)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Materials ScienceThapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations