Effect of MnO on the microstructure and electrical properties of SnO2–Zn2SnO4 ceramic composites

  • Guo-Zhong ZangEmail author
  • Juan Du
  • Rui-Qing Chu
  • Zhi-Jun Xu


This work presents the microstructure and electrical properties of MnO-doped SnO2–Zn2SnO4 ceramic composites prepared through conventional ceramic processing. Scanning electron microscopy images reveal that all samples have a compact structure. With increasing MnO content, the grains grow larger and the grain boundaries become unsharp. Energy dispersive spectroscopy results for the sample doped with 0.1 mol% MnO indicate that Mn distributes randomly on the grain surfaces. X-ray diffraction patterns exhibit that all the samples are composed of SnO2 and Zn2SnO4, and the relative intensity of the diffraction peak for Zn2SnO4 increases with increasing MnO content. The relations between the electric field and current density show that all the samples have varistor properties. For the samples doped with 0.2 and 0.3 mol% MnO, the breakdown electric field is so large that it exceeds the measuring range of the instrument, whereas the relative permittivity is as low as about 30 at 100 Hz. In the electric modulus spectra, two sets of relaxation peaks were observed and the corresponding activation energies are enhanced greatly by doping MnO. The effect of MnO on the microstructure and electrical properties indicates that the space charges trapped by oxygen vacancies are the origin of the great permittivity and varistor properties for SnO2–Zn2SnO4 ceramic composites.



This work was supported by the Natural Science Foundation of Henan Province of China (Grant No. 182300410177).


  1. 1.
    W.-B. Su, J.-F. Wang, H.-C. Chen, W.-X. Wang, G.-Z. Zhang, C.-P. Li, J. Appl. Phys. 92, 4779 (2002)CrossRefGoogle Scholar
  2. 2.
    T.R.N. Kutty, S. Philip, Mater. Sci. Eng. B 33, 58 (1995)CrossRefGoogle Scholar
  3. 3.
    S.-Y. Chung, I.-D. Kim, S.-J.L. Kang, Nat. Mater. 3, 774 (2004)CrossRefGoogle Scholar
  4. 4.
    Y. Huang, L. Liu, D. Shi, S. Wu, S. Zheng, L. Fang, C. Hu, B. Elouadi, Ceram. Int. 39, 6063 (2013)CrossRefGoogle Scholar
  5. 5.
    Y. Huang, D. Shi, Y. Li, G. Li, Q. Wang, L. Liu, L. Fang, J. Mater. Sci. 24, 1994 (2013)Google Scholar
  6. 6.
    A.B. Glot, R. Bulpett, A.I. Ivon, P.M. Gallegos-Acevedo, Phys. B 457, 108 (2015)CrossRefGoogle Scholar
  7. 7.
    M.M. Shahraki, S. Alipour, P. Mahmoudi, A. Karimi, Ceram. Int. 44, 20386 (2018)CrossRefGoogle Scholar
  8. 8.
    G.-Z. Zang, J.-F. Wang, H.-C. Chen, W.-B. Su, C.-M. Wang, P. Qi, Chin. Phys. Lett. 22, 750 (2005)CrossRefGoogle Scholar
  9. 9.
    G.-Z. Zang, L.-B. Li, H.-H. Liu, X.-F. Wang, Z.-G. Gai, J. Alloy. Compd. 580, 611 (2013)CrossRefGoogle Scholar
  10. 10.
    G.-Z. Zang, X.-F. Wang, L.-B. Li, H.-F. Guo, Q.-D. Chen, J. Electroceram. 31, 134 (2013)CrossRefGoogle Scholar
  11. 11.
    G.-Z. Zang, H.-H. Liu, L.-J. Lei, X.-F. Wang, L.-B. Li, J.-X. Cao, G.-R. Li, J. Am. Ceram. Soc. 98, 2112 (2015)CrossRefGoogle Scholar
  12. 12.
    G.-Z. Zang, X.-F. Wang, L.-B. Li, D.-D. Wang, Ceram. Int. 43, 8018 (2017)CrossRefGoogle Scholar
  13. 13.
    G.-Z. Zang, X.-F. Wang, H.-H. Liu, F.-Z. Zhou, L.-B. Li, J. Mater. Sci. 27, 9836 (2016)Google Scholar
  14. 14.
    G.-Z. Zang, X.-F. Wang, L.-B. Li, D.-D. Wang, Mater. Lett. 194, 238 (2017)CrossRefGoogle Scholar
  15. 15.
    L.J. Bowen, F.J. Avella, J. Appl. Phys. 54, 2764 (1983)CrossRefGoogle Scholar
  16. 16.
    D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999)CrossRefGoogle Scholar
  17. 17.
    S. Ke, H. Fan, H. Huang, Appl. Phys. Lett. 97, 132905 (2010)CrossRefGoogle Scholar
  18. 18.
    X.-T. Zhao, J.-Y. Li, X. Li, S.-T. Li, Acta Phys. Sin. 61, 153103 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Guo-Zhong Zang
    • 1
    Email author
  • Juan Du
    • 2
  • Rui-Qing Chu
    • 3
  • Zhi-Jun Xu
    • 3
  1. 1.School of Physics and EngineeringHenan University of Science and TechnologyLuoyangChina
  2. 2.School of Materials Science and EngineeringLiaocheng UniversityLiaochengChina
  3. 3.School of Environmental and Material EngineeringYantai UniversityYantaiChina

Personalised recommendations