Advertisement

Low resistivity ohmic contacts on lightly doped n-type β-Ga2O3 using Mg/Au

  • Jianjun Shi
  • Xiaochuan Xia
  • Hongwei LiangEmail author
  • Qasim Abbas
  • Jun Liu
  • Heqiu Zhang
  • Yang Liu
Article
  • 42 Downloads

Abstract

Mg/Au stacks were introduced to prepare ohmic contact at different annealing temperatures on Sn lightly doped β-Ga2O3. Linear current–voltage characteristics were realized when the annealing temperatures were 300, 400 and 500 °C. The transmission line measurements were used to extract the specific contact resistance (ρc) of the annealed samples. The ρc decreased as annealing temperature increased and a minimum ρc of 2.1 × 10−5 Ω cm2 was obtained for the sample annealed at 500 °C. However, the contact electrodes with the ρc of 1.3 × 10−4 Ω cm2 after annealing at 400 °C had better surface profile and stability. The ohmic contact mechanism and stability of electrodes were discussed in details.

Notes

Acknowledgements

This work was supported by national key R&D plan (Nos. 2016YFB0400600, 2016YFB0400601), national science foundation of china (Nos. 11675198, 11875097, 61574026, 61774072), Liaoning provincial natural science foundation of china (Nos. 201602453, 201602176), China Postdoctoral Science Foundation Funded Project (No. 2016M591434), The Dalian Science and Technology Innovation Fund (No. 2018J12GX060).

References

  1. 1.
    K. Chabak, A. Green, N. Moser, S. Tetlak, J. McCandless, K. Leedy, R. Fitch, A. Crespo, G. Jessen, IEEE Electron Device Lett. (2017)Google Scholar
  2. 2.
    M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Appl. Phys. Lett. 100, 013504 (2012)CrossRefGoogle Scholar
  3. 3.
    M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, S. Yamakoshi, Semicond. Sci. Technol. 31, 034001 (2016)CrossRefGoogle Scholar
  4. 4.
    K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, R. Fornari, J. Appl. Phys. 110, 063720 (2011)CrossRefGoogle Scholar
  5. 5.
    Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Bruetzam, R. Bertram, S. Ganschow, R. Fornari, Cryst. Res. Technol. 45, 1229 (2010)CrossRefGoogle Scholar
  6. 6.
    E.G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, N. Ichinose, J. Cryst. Growth 270, 420 (2004)CrossRefGoogle Scholar
  7. 7.
    N. Ueda, H. Hosono, R. Waseda, H. Kawazoe, Appl. Phys. Lett. 70, 3561 (1997)CrossRefGoogle Scholar
  8. 8.
    A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, S. Yamakoshi, Jpn. J. Appl. Phys. 55, 1202A2 (2016)CrossRefGoogle Scholar
  9. 9.
    H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, Y. Yaguchi, Jpn. J. Appl. Phys. 47, 8506 (2008)CrossRefGoogle Scholar
  10. 10.
    W. Mu, Z. Jia, Y. Yin, Q. Hu, Y. Li, B. Wu, J. Zhang, X. Tao, J. Alloy. Compd. 714, 453 (2017)CrossRefGoogle Scholar
  11. 11.
    K. Sasaki, A. Kuramata, T. Masui, E.G. Villora, K. Shimamura, S. Yamakoshi, Appl. Phys. Express 5, 035502 (2012)CrossRefGoogle Scholar
  12. 12.
    E.G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, K. Aoki, Appl. Phys. Lett. 92, 202120 (2008)CrossRefGoogle Scholar
  13. 13.
    K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, Appl. Phys. Express 6, 086502 (2013)CrossRefGoogle Scholar
  14. 14.
    P.H. Carey, Y. Jiancheng, R. Fan, D.C. Hays, S.J. Pearton, A. Kuramata, I.I. Kravchenko, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. 35, 061201 (2017)CrossRefGoogle Scholar
  15. 15.
    P.H. Carey, J. Yang, F. Ren, D.C. Hays, S.J. Pearton, S. Jang, A. Kuramata, I.I. Kravchenko, Aip Adv. 7, 095313 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Mohamed, K. Irmscher, C. Janowitz, Z. Galazka, R. Manzke, R. Fornari, Appl. Phys. Lett. 101, 132106 (2012)CrossRefGoogle Scholar
  17. 17.
    V.D. Wheeler, D.I. Shahin, M.J. Tadjer, C.R. Eddy Jr., ECS J. Solid State Sci. Technol. 6, Q3052 (2017)CrossRefGoogle Scholar
  18. 18.
    Y. Yao, R.F. Davis, L.M. Porter, J. Electron. Mater. 46, 2053 (2017)CrossRefGoogle Scholar
  19. 19.
    N.D. Lang, W. Kohn, Phys. Rev. B 3, 1215 (1971)CrossRefGoogle Scholar
  20. 20.
    T. Oyamada, H. Sasabe, C. Adachi, Electr. Eng. Jpn. 152, 37 (2005)CrossRefGoogle Scholar
  21. 21.
    H. Arai, H. Nakanotani, K. Morimoto, C. Adachi, J. Vacuum Sci. Technol. B 34, 040607 (2016)CrossRefGoogle Scholar
  22. 22.
    T.C. Lovejoy, R. Chen, X. Zheng, E.G. Villora, K. Shimamura, H. Yoshikawa, Y. Yamashita, S. Ueda, K. Kobayashi, S.T. Dunham, F.S. Ohuchi, M.A. Olmstead, Appl. Phys. Lett. 100, 181602 (2012)CrossRefGoogle Scholar
  23. 23.
    R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai, S. Ohira, Appl. Phys. Lett. 94, 222102 (2009)CrossRefGoogle Scholar
  24. 24.
    V. Cvetković, N. Jovićević, J. Stevanović, M. Pavlović, N. Vukićević, Z. Stevanović, J. Jovićević, Metals 7, 95 (2017)CrossRefGoogle Scholar
  25. 25.
    H.S. Kim, H.W. Kim, Acta Phys. Pol. A 116, 1 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jianjun Shi
    • 1
  • Xiaochuan Xia
    • 1
  • Hongwei Liang
    • 1
    Email author
  • Qasim Abbas
    • 1
  • Jun Liu
    • 1
  • Heqiu Zhang
    • 1
  • Yang Liu
    • 1
  1. 1.School of MicroelectronicsDalian University of TechnologyDalianChina

Personalised recommendations