Green synthesis of the Ag/Al2O3 nanoparticles using Bryonia alba leaf extract and their catalytic application for the degradation of organic pollutants

  • Mahmoud NasrollahzadehEmail author
  • Zahra Issaabadi
  • S. Mohammad Sajadi


In our present work, for the first time we reported an easy, inexpensive and eco-friendly method for the preparation of silver nanoparticles (Ag NPs) supported on nano aluminum oxide (Al2O3) using Bryonia alba leaf extract. The plant extract as a mild, renewable, non-toxic reducing and stabilizing agent has an important role in anchoring of Ag NPs on the nano Al2O3. The formation of Ag/Al2O3 NPs were proved through FT-IR, XRD, TEM, EDS and FE-SEM. The catalytic activity of the Ag/Al2O3 NPs has been tested as an affective and heterogeneous catalyst for the reduction of 4-nitrophenol (4-NP), 2,4-dinitrophenylhydrazine (2,4-DNPH) and degradation of the congo red (CR), methyl orange (MO), methylene blue (MB) and Rhodamine B (RhB) in the presence of sodium borohydride (NaBH4) at room temperature. The catalyst can be recovered and recycled multiple times without losing of activity.



We gratefully thank the Iran National Science Foundation (INSF) for supporting this Project Numbered 96004945. We also gratefully acknowledge the University of Qom for the support of this work.


  1. 1.
    R. Dai, J. Chen, J. Lin, S. Xiao, S. Chen, Y. Deng, Reduction of nitro phenols using nitroreductase from E. coli in the presence of NADH. J. Hazard. Mater. 170, 141–143 (2009)CrossRefGoogle Scholar
  2. 2.
    W. Zhang, X. Xiao, T. An, Z. Song, J. Fu, G. Sheng, M. Cui, Kinetics, degradation pathway and reaction mechanism of advanced oxidation of 4-nitrophenol in water by a UV/H2O2 process. J. Chem. Technol. Biotechnol. 78, 788–794 (2003)CrossRefGoogle Scholar
  3. 3.
    M. Nakagawa, D. Crosby, Photodecomposition of nitrofen. J. Agric. Food Chem. 22, 849–853 (1974)CrossRefGoogle Scholar
  4. 4.
    I. Banat, P. Nigam, D. Singh, R. Marchant, Microbial decolorization of textile-dyecontaining effluents: a review. Bioresour. Technol. 58, 217–227 (1996)CrossRefGoogle Scholar
  5. 5.
    N.L. Gavade, A.N. Kadam, Y.B. Gaikwad, M.J. Dhanavade, K.M. Garadkar, Decoration of biogenic Ag NPs on template free ZnO nanorods for sunlight driven photocatalytic detoxification of dyes and inhibition of bacteria. J. Mater. Sci. Mater. Electron. 27, 11080–11091 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Nasrollahzadeh, E. Mehdipour, M. Maryami, Efficient catalytic reduction of nitroarenes and organic dyes in water by synthesized Ag/diatomite nanocomposite using Alocasia macrorrhiza leaf extract. J. Mater. Sci. Mater. Electron. 29, 17054–17066 (2018)CrossRefGoogle Scholar
  7. 7.
    V. Vidhu, D. Philip, Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron 56, 54–62 (2014)CrossRefGoogle Scholar
  8. 8.
    L.A. Alfonso-Herrera, A.M. Huerta-Flores, L.M. Torres-Martínez, J.M. Rivera-Villanueva, D.J. Ramírez-Herrera, Hybrid SrZrO3-MOF heterostructure: surface assembly and photocatalytic performance for hydrogen evolution and degradation of indigo carmine dye. J. Mater. Sci. Mater. Electron. 29, 10395–10410 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Qin, K. Lin, Q. Shuai, H. Liang, J. Peng, C. Mao, Y. Ji, H. Wu, Facile synthesis of 2D single-phase Ni0.9Zn0.1O and its application in decolorization of dye. J. Mater. Sci. Mater. Electron. 29, 9740–9744 (2018)CrossRefGoogle Scholar
  10. 10.
    S. Saha, A. Pal, S. Kundu, S. Basu, T. Pal, Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26(4), 2885–2893 (2010)CrossRefGoogle Scholar
  11. 11.
    P. Wilhelm, D. Stephan, Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres. J. Photochem. Photobiol. A 185, 19–25 (2007)CrossRefGoogle Scholar
  12. 12.
    B. Manu, S. Chaudhari, Anaerobic decolorisation of simulated textile wastewater containing azo dyes. Bioresour. Technol. 82, 225–231 (2002)CrossRefGoogle Scholar
  13. 13.
    E. Abdel-Halim, M. El-Rafie, S. Al-Deyab, Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles. Carbohydr. Polym. 85, 692–697 (2011)CrossRefGoogle Scholar
  14. 14.
    X. Huang, H. Wu, S. Pu, W. Zhang, X. Liao, B. Shi, One-step room-temperature synthesis of Au@Pd core-shell nanoparticles with tunable structure using plant tannin as reductant and stabilizer. Green Chem. 13, 950–957 (2011)CrossRefGoogle Scholar
  15. 15.
    C. Noguez, Surface Plasmons on Metal Nanoparticles, the influence of shape and physical environment. J. Phys. Chem. C 111, 3806–3819 (2007)CrossRefGoogle Scholar
  16. 16.
    X. Zhou, X. Huang, X. Qi, S. Wu, C. Xue, F. Boey, Q. Yan, P. Chen, H. Zhang, In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J. Phys. Chem. C 113, 10842–10846 (2009)CrossRefGoogle Scholar
  17. 17.
    A. Lowe, B. Sumerlin, M. Donovan, C. McCormick, Facile preparation of transition metal nanoparticles stabilized by well-defined (Co)polymers synthesized via aqueous reversible addition-fragmentation chain transfer polymerization. J. Am. Chem. Soc. 124, 11562–11563 (2002)CrossRefGoogle Scholar
  18. 18.
    J. He, T. Kunitake, A. Nakao, Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem. Mater. 15, 4401–4406 (2003)CrossRefGoogle Scholar
  19. 19.
    A. Troupis, A. Hiskia, E. Papaconstantinou, Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. Angew. Chem. Int. Ed. 41, 1911–1914 (2002)CrossRefGoogle Scholar
  20. 20.
    M. Nasrollahzadeh, S.M. Sajadi, A. Hatamifard, Waste chicken eggshell as a natural valuable resource and environmentally benign support for biosynthesis of catalytically active Cu/eggshell, Fe3O4/eggshell and Cu/Fe3O4/eggshell nanocomposites. Appl. Catal. B 191, 209–227 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Nasrollahzadeh, M. Atarod, S.M. Sajadi, Biosynthesis, characterization and catalytic activity of Cu/RGO/Fe3O4 for direct cyanation of aldehydes with K4[Fe(CN)6]. J. Colloid Interface Sci. 486, 153–162 (2017)CrossRefGoogle Scholar
  22. 22.
    M. Maryami, M. Nasrollahzadeh, E. Mehdipour, S.M. Sajadi, Preparation of the Ag/RGO nanocomposite by use of Abutilon hirtum leaf extract: a recoverable catalyst for the reduction of organic dyes in aqueous medium at room temperature. Int. J. Hydrog. Energy 41, 21236–21245 (2016)CrossRefGoogle Scholar
  23. 23.
    B. Khodadadi, M. Bordbar, M. Nasrollahzadeh, Achillea millefolium L. extract mediated green synthesis of waste peach kernel shell supported silver nanoparticles: application of the nanoparticles for catalytic reduction of a variety of dyes in water. J. Colloid Interface Sci. 493, 85–93 (2017)CrossRefGoogle Scholar
  24. 24.
    B. Khodadadi, M. Bordbar, M. Nasrollahzadeh, Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: catalytic activity for reduction of organic dyes. J. Colloid Interface Sci. 490, 1–10 (2017)CrossRefGoogle Scholar
  25. 25.
    N. Vigneshwaran, N.P. Nachane, R.H. Balasubramanya, P.V. Varadarajan, A novel one-pot green synthesis of stable silver nanoparticles using soluble starch. Carbohydr. Res. 341, 2012–2018 (2006)CrossRefGoogle Scholar
  26. 26.
    P. Banerjee, M. Satapathy, A. Mukhopahayay, P. Das, Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour. Bioprocess. 1(3), 1–10 (2014)Google Scholar
  27. 27.
    P. Raveendran, J. Fu, S.L. Wallen, Completely green synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125, 13940–13941 (2003)CrossRefGoogle Scholar
  28. 28.
    J. Choi, D. Reddy, M. Islam, B. Seo, S. Joo, T. Kim, Green synthesis of the reduced graphene oxide-CuI quasi-shell-core nanocomposite: a highly efficient and stable solar-light-induced catalyst for organic dye degradation in water. Appl. Surf. Sci. 358, 159–167 (2015)CrossRefGoogle Scholar
  29. 29.
    G. Khade, M. Suwarnkar, N. Gavade, K. Garadkar, Green synthesis of TiO2 and its photocatalytic activity. J. Mater. Sci. Mater. Electron. 26, 3309–3315 (2015)CrossRefGoogle Scholar
  30. 30.
    L.Z. Fekri, M. Nikpassand, K.H. Pour, Green aqueous synthesis of mono, bis and trisdihydropyridines using nano Fe3O4 under ultrasound irradiation. Curr. Org. Synth. 12, 76–79 (2015)CrossRefGoogle Scholar
  31. 31.
    J. Sharma, M. Akhtar, S. Ameen, P. Srivastava, G. Singh, Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J. Alloys Compd. 632, 321–325 (2015)CrossRefGoogle Scholar
  32. 32.
    D. Philip, Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim. Acta A 73, 374–381 (2009)CrossRefGoogle Scholar
  33. 33.
    B.M. Yashwanth, S. Shanker Rai, K.P. Shivalinge Gowda, Effect of Bryonia alba homeopathic formulation in mono sodium urate induced gouty arthritis and potassium oxonate induced hyperuricemia in experimental animals. World J. Pharm. Pharm. Sci. 4, 1120–1134 (2014)Google Scholar
  34. 34.
    C. Montoliu, S. Valles, J. Renau Piqueras, C. Guerri, Ethanol-induced oxygen radical formation and lipid peroxidation in rat brain: effect of chronic alcohol consumption. J. Neurochem. 63, 1855–1862 (1994)CrossRefGoogle Scholar
  35. 35.
    M.P. Gard, G.P. Garg, Evaluation of pharmacognostical parameters and hepatoprotective activity in Bryonia alba Linn. J. Chem. Pharm. Res. 3, 99–109 (2011)Google Scholar
  36. 36.
    A.G. Panosyan, G.M. Avetissian, V.A. Mnattsakanian, S.G. Batrakov, S.A. Vartanian, E.S. Gabrielian, E.A. Amroyan, Unsaturated polyhydroxy acids having prostaglandin-like activity from Bryonia alba II. Major components. Plant Medica 47, 17–25 (1983)CrossRefGoogle Scholar
  37. 37.
    L.M. Gogilashvili, E.P. Kemertelidze, Lectin from Bryonia alba roots. Chem. Nat. Compd. 36, 399–401 (2000)CrossRefGoogle Scholar
  38. 38.
    S.V. Bhat, B.A. Nagasampagi, M. Sivakumar, Chemistry of Natural Products, (Narosa Publishing House, New Delhi, 2005), p. 585Google Scholar
  39. 39.
    H.A.K. Kumar, B.K. Mandal, K.M. Kumar, S.B. Maddinedi, T.S. Kumar, P. Madhiyazhagan, A.R. Ghosh, Antimicrobial and antioxidant activities of Mimusops elengi seed extract mediated isotropic silver nanoparticles. Spectrochim. Acta A 130, 13–18 (2014)CrossRefGoogle Scholar
  40. 40.
    E. Soleimani, N. Zamani, Surface modification of alumina nanoparticles: a dispersion study in organic media. Acta Chim. Slov. 64, 644–653 (2017)CrossRefGoogle Scholar
  41. 41.
    A. Rostami-Vartooni, M. Nasrollahzadeh, M. Alizadeh, Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: application of the particles for catalytic reduction of organic dyes. J. Colloid Interface Sci. 470, 268–275 (2016)CrossRefGoogle Scholar
  42. 42.
    B.K. Ghosh, S. Hazra, B. Nak, N.N. Ghosh, Preparation of Cu nanoparticle loaded SBA-15 and their excellent catalytic activity in reduction of variety of dyes. Powder Technol. 269, 371–378 (2015)CrossRefGoogle Scholar
  43. 43.
    P. Zhang, Y. Sui, C. Wang, Y. Wang, G. Cui, C. Wang, B. Liu, B. Zou, A one-step green route to synthesize copper nanocrystals and their applications in catalysis and surface enhanced Raman scattering. Nanoscale 6, 5343–5350 (2014)CrossRefGoogle Scholar
  44. 44.
    X. Wang, J. Fu, M. Wang, Y. Wang, Z. Chen, J. Zhang, J. Chen, Q. Xu, Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol. J. Mater. Sci. 49, 5056–5065 (2014)CrossRefGoogle Scholar
  45. 45.
    M. Xie, F. Zhang, Y. Long, J. Ma, Pt nanoparticles supported on carbon coated magnetic microparticles: an efficient recyclable catalyst for hydrogenation of aromatic nitro-compounds. RSC Adv. 3, 10329–10334 (2013)CrossRefGoogle Scholar
  46. 46.
    B. Sreedhar, D.K. Devi, D. Yada, Selective hydrogenation of nitroarenes using gum acacia supported Pt colloid an effective reusable catalyst in aqueous medium. Catal. Commun. 12, 1009–1014 (2011)CrossRefGoogle Scholar
  47. 47.
    P. Wang, F. Zhang, Y. Long, M. Xie, R. Li, J. Ma, Stabilizing Pd on the surface of hollow magnetic mesoporous spheres: a highly active and recyclable catalyst for hydrogenation and Suzuki coupling reactions. Catal. Sci. Technol. 3, 1618–1624 (2013)CrossRefGoogle Scholar
  48. 48.
    K. Layek, M.L. Kantam, M. Shirai, D. Nishio-Hamane, T. Sasaki, H. Maheswaran, Gold nanoparticles stabilized on nanocrystalline magnesium oxide as an active catalyst for reduction of nitroarenes in aqueous medium at room temperature. Green Chem. 14, 3164–3174 (2012)CrossRefGoogle Scholar
  49. 49.
    Y.S. Feng, J.J. Ma, Y.M. Kang, H.J. Xu, PdCu nanoparticles supported on graphene: an efficient and recyclable catalyst for reduction of nitroarenes. Tetrahedron 70, 6100–6105 (2014)CrossRefGoogle Scholar
  50. 50.
    Z. Duan, G. Ma, W. Zhang, Preparation of copper nanoparticles and catalytic properties for the reduction of aromatic nitro compounds. Bull. Korean Chem. Soc. 33, 4003–4006 (2012)CrossRefGoogle Scholar
  51. 51.
    Y. Choi, H.S. Bae, E. Seo, S. Jang, K.H. Park, B.S. Kim, Hybrid gold nanoparticle-reduced graphene oxide nanosheets as active catalysts for highly efficient reduction of nitroarenes. J. Mater. Chem. 21, 15431–15436 (2011)CrossRefGoogle Scholar
  52. 52.
    M. Islam, P. Mondal, A.S. Roy, K. Tuhina, Synthesis, characterization and catalytic activities of a reusable polymer-anchored palladium(II) complex: effective catalytic hydrogenation of various organic substrates. Transit. Met. Chem. 35, 427–435 (2010)CrossRefGoogle Scholar
  53. 53.
    Z. Wang, C. Xu, G. Gao, X. Li, Facile synthesis of well-dispersed Pd-graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction. RSC Adv. 4, 13644–13651 (2014)CrossRefGoogle Scholar
  54. 54.
    H. Yang, S. Li, X. Zhang, X. Wang, J. Ma, Imidazolium ionic liquid-modified fibrous silica microspheres loaded with gold nanoparticles and their enhanced catalytic activity and reusability for the reduction of 4-nitrophenol. J. Mater. Chem. A 2, 12060–12067 (2014)CrossRefGoogle Scholar
  55. 55.
    J. Li, C.Y. Liu, Y. Liu, Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 22, 8426–8430 (2012)CrossRefGoogle Scholar
  56. 56.
    N. Sahiner, O. Ozay, Enhanced catalytic activity in the reduction of 4-nitrophenol and 2-nitrophenol by p(AMPS)-Cu(0) hydrogel composite materials. Curr. Nanosci. 8, 367–374 (2012)CrossRefGoogle Scholar
  57. 57.
    N. Sahiner, H. Ozay, O. Ozay, N. Aktas, New catalytic route: hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Appl. Catal. A 385, 201–207 (2010)CrossRefGoogle Scholar
  58. 58.
    T. Babita Devi, M.D. Ahmaruzzaman, S. Begum, A rapid, facile and green synthesis of Ag@AgCl nanoparticles for the effective reduction of 2, 4-dinitrophenyl hydrazine. New J. Chem. 40, 1497–1506 (2016)CrossRefGoogle Scholar
  59. 59.
    Z. Deng, H. Zhu, B. Peng, H. Chen, Y. Sun, X. Gang, P. Jin, J. Wang, Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities. ACS Appl. Mater. Interfaces 4, 5625–5632 (2012)CrossRefGoogle Scholar
  60. 60.
    L. Ai, C. Zeng, Q. Wang, One-step solvothermal synthesis of Ag-Fe3O4 composite as a magnetically recyclable catalyst for reduction of Rhodamine B. Catal. Commun. 14, 68–73 (2011)CrossRefGoogle Scholar
  61. 61.
    X. Yang, H. Zhong, Y. Zhu, H. Jiang, J. Shen, J. Huang, C. Li, Highly efficient reusable catalyst based on silicon nanowire arrays decorated with copper nanoparticles. J. Mater. Chem. A 2, 9040–9047 (2014)CrossRefGoogle Scholar
  62. 62.
    B. Zhang, B. Zhao, S. Huang, R. Zhang, P. Xu, H.L. Wang, One-pot interfacial synthesis of Au nanoparticles and Au-polyaniline nanocomposites for catalytic applications. CrystEngComm 14, 1542–1544 (2012)CrossRefGoogle Scholar
  63. 63.
    S. Xuan, Y.X. Wang, J.C. Yu, K.C.F. Leung, Preparation, characterization, and catalytic activity of core/shell Fe3O4@polyaniline@Au nanocomposites. Langmuir 25(19), 11835–11843 (2009)CrossRefGoogle Scholar
  64. 64.
    C. Wang, K. Tang, D. Wang, Z. Liu, L. Wang, Simple self-assembly of HLaNb2O7 nanosheets and Ag nanoparticles/clusters and their catalytic properties. J. Mater. Chem. 22, 22929–22934 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mahmoud Nasrollahzadeh
    • 1
    Email author
  • Zahra Issaabadi
    • 1
  • S. Mohammad Sajadi
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of QomQomIran
  2. 2.Department of Petroleum Geoscience, Faculty of ScienceSoran UniversitySoranIraq

Personalised recommendations