Advertisement

Effect of glycine on structural, optical and dielectric properties of solution grown samarium chloride coordinated with salicylic acid

  • Harjinder Singh
  • K. K. BamzaiEmail author
Article
  • 37 Downloads

Abstract

Samarium chloride coordinated with salicylic acid (SMS) and samarium chloride coordinated with two organic ligands glycine and salicylic acid (SMGS) have been grown by low temperature solution technique i.e., slow evaporation method. The crystalline nature of the material was firstly confirmed by single crystal X-ray diffraction analysis and secondly by powder X-ray diffraction analysis. It has been observed that the material prepared crystallizes in monoclinic system having space group P121/c1. The modes of vibration of different molecular group present in SMS and SMGS have been confirmed by Fourier transform infrared (FTIR) analysis. It indicates the coordination of ligands in complexes i.e., salicylic acid coordinated through oxygen atoms of carbonyl group (C=O) and glycine ligand coordinated through nitrogen atoms. UV–Vis transmittance study analyzes the optical transparency of SMS and SMGS and it has been found that with the incorporation of glycine in SMS transmittance decreases. Moreover, the impact of glycine in SMS single crystal on its various optical parameters such as optical band gap, refractive index and optical conductivity has been calculated. The decrease in the value of optical band gap from 3.43 to 3.29 eV with the incorporation of glycine in SMS has been observed. The calculated values of refractive index at 425 nm for SMS and SMGS complexes are 1.30 and 2.46 respectively and the optimum value of optical conductivity at 425 nm for SMS and SMGS is 4 \(\times\) 105 and 1.4 \(\times\) 107 Sm−1 respectively. Luminescence of Sm3+ ion is strongly sensitized by salicylic acid as compared to glycine thereby fluorescence of the SMGS complex diminished. Decrease in the dielectric constant was observed with the incorporation of glycine in SMS single crystal. Complex electric modulus analysis confirms the non-Debye type of relaxation in both the materials. Activation energy value depends on frequency as well as on glycine coordination in SMS single crystal.

Notes

Acknowledgements

The authors are thankful to Centre for Nano-science & Technology, Anna University, Chennai for providing facilities for dielectric analysis using their impedance analyzer instrument.

References

  1. 1.
    A. Senthil, P. Ramasamy, S. Verma, J. Crystal Growth 318, 757 (2011)CrossRefGoogle Scholar
  2. 2.
    R.M. Jauhar, S. Kalainathan, P. Murugakoothan, J. Crystal Growth 424, 42 (2015)CrossRefGoogle Scholar
  3. 3.
    L. Jiang, H. Dong, W. Hu, J. Mater. Chem. 20, 4994 (2010)CrossRefGoogle Scholar
  4. 4.
    S. Kumar, B. Kumar, Cryst. Eng. Commun. 20, 624 (2018)CrossRefGoogle Scholar
  5. 5.
    R.B. Ganesh, V. Kumar, K. Meera, N.P. Rajesh, P. Ramasamy, J. Cryst. Growth 282, 429 (2005)CrossRefGoogle Scholar
  6. 6.
    N. Goel, N. Sinha, B. Kumar, Opt. Mater. 35, 479 (2013)CrossRefGoogle Scholar
  7. 7.
    N. Saravanan, S. Santhanakrishnan, S. Suresh, S. Sahaya, J. Dhas, P. Jayaprakash, V. Chithambaram, J. Mater. Sci.: Mater. Electron. 29, 18449 (2018)Google Scholar
  8. 8.
    R.E. Whan, G.A. Crosby, J. Mol. Spectrosc. 8, 315 (1962)CrossRefGoogle Scholar
  9. 9.
    N. Sabbatini, M. Guardigli, J.M. Lehn, Coord. Chem. Rev. 123, 201 (1993)CrossRefGoogle Scholar
  10. 10.
    K. Manseki, S. Yanagida, Chem. Commun. 12, 1242 (2007)CrossRefGoogle Scholar
  11. 11.
    G. Sharma, A.K. Narula, J. Mater. Sci.: Mater. Electron. 27, 4928 (2016)Google Scholar
  12. 12.
    M. Hu, L.Y. Yue, E.C. Sanudo, S.M. Fang, J. Coord. Chem. 69, 2164 (2016)CrossRefGoogle Scholar
  13. 13.
    A. Jegatheesan, G. Rajaerajan, Inter. J. Chem. Tech. Res. 8, 572 (2015)Google Scholar
  14. 14.
    S.A. Avila, A.L. Rajesh, J. Mater. Sci.: Mater. Electron. 28, 10893 (2017)Google Scholar
  15. 15.
    P. Kumaresan, S.M. Babu, P.M. Anbarasan, Opto. Adv. Mater. 1, 65 (2007)Google Scholar
  16. 16.
    S. Chennakrishnan, S.M.R. Kumar, D. Sivavishnu, M. Ganapathi, I.V. Potheher, A.M. Vimalan, J. Mater. Sci.: Mater. Electron. 27, 10113 (2016)Google Scholar
  17. 17.
    M.N. Bhat, S.M. Dharmaprakash, J. Cryst. Growth 242, 245 (2002)CrossRefGoogle Scholar
  18. 18.
    M. Saravana, A. Senthil, S.A. Rajasekar, N. Vijayan, Optik 127, 1463 (2016)CrossRefGoogle Scholar
  19. 19.
    E. Iravani, N. Nami, F. Nabizadeh, E. Bayani, B. Neumuller, Bull. Korean Chem. Soc. 34, 3420 (2013)CrossRefGoogle Scholar
  20. 20.
    R. Vivekanandhan, K. Raju, V. Ravisankar, V. Chithambaran, J. Pure Appl. Math. 115, 281 (2017)Google Scholar
  21. 21.
    G. Anbazhagan, P.S. Joseph, G. Shankar, Opt. Commun. 291, 304 (2013)CrossRefGoogle Scholar
  22. 22.
    P. Singh, M.M. Abdullah, S. Sagadeva, S. Ikram, J. Mater. Sci.: Mater. Electron. 29, 7904 (2018)Google Scholar
  23. 23.
    R.M. Jauhar, V. Viswanathan, P. Vivek, G. Vinitha, D. Velmurugan, P. Murugakoothan, RSC Adv. 6, 57977 (2016)CrossRefGoogle Scholar
  24. 24.
    M.L. Gonzalez, M.E.S. Vergara, J.R.A. Baba, M.I.C. Uribe, R.A. Toscano, C.A. Toledano, J. Mater. Chem. C 2, 5607 (2014)CrossRefGoogle Scholar
  25. 25.
    O.G. Abdullah, S.B. Aziz, M.A. Rasheed, Results Phys. 6, 1103 (2016)CrossRefGoogle Scholar
  26. 26.
    C.J. Xu, H. Yang, F. Xie, X.Z. Guo, J. Alloys Compds. 392, 96 (2005)CrossRefGoogle Scholar
  27. 27.
    B. Gao, W. Zhang, Z. Zhang, Q. Lei, J. Lumin. 132, 2005 (2012)CrossRefGoogle Scholar
  28. 28.
    Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 112, 1126 (2012)CrossRefGoogle Scholar
  29. 29.
    P. Wang, Y.J. Zhang, J. Qin, Y. Chen, Y. Zhao, J. Mol. Struct. 1083, 95 (2015)CrossRefGoogle Scholar
  30. 30.
    K. Thukral, N. Vijayan, D.H. Sonia, K.K. Maurya, J. Philip, V. Jayaramakrishan. Arab. J. Chem. (2015)  https://doi.org/10.1016/j.arabjc.2015.08.022 Google Scholar
  31. 31.
    B. Riscob, M. Shakir, J.K. Sundar, S. Natarajan, M.A. Wahab, G. Bhagavannarayana, Spectrochim. Acta Part A 78, 543 (2011)CrossRefGoogle Scholar
  32. 32.
    M. Banan, R.B. Lal, A. Batra, J. Mater. Sci. 27, 2291 (1992)CrossRefGoogle Scholar
  33. 33.
    R. Muralidharan, R. Mohankumar, R. Dhanasekaran, A.K. Tripathi, R. Jayavel, P. Ramasamy, Mater. Lett. 57, 3291 (2003)CrossRefGoogle Scholar
  34. 34.
    S. Sangeetha, V. Rajendran, J. Mater. Sci.: Mater. Electron. 29, 17093 (2018)Google Scholar
  35. 35.
    Y. Chen, Y. Liu, B. Gao, C. Zhu, Z. Liu, Crystals 7, 224 (2017)CrossRefGoogle Scholar
  36. 36.
    N.G. McCrum, B.E. Read, G. Williams, Anelastic and dielectric effects in polymeric solids (Wiley, New York, 1967)Google Scholar
  37. 37.
    A. Shukla, R.N.P. Choudhary, Phys. B 406, 2492 (2011)CrossRefGoogle Scholar
  38. 38.
    S. Thakura, R. Raia, I. Bdikinb, M.A. Valentec, Mater. Res. 19, 1 (2016)CrossRefGoogle Scholar
  39. 39.
    M.A.L. Nobre, S.J. Langfredi, Phys. Chem. Solids 62, 20 (1999)Google Scholar
  40. 40.
    R.S. Yadav, I. Kuritka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, J. Svec, V. Enev, M. Hajduchova, Adv. Nat. Sci.: Nanosci. Nanotechnol. 8, 1 (2017)Google Scholar
  41. 41.
    D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)CrossRefGoogle Scholar
  42. 42.
    N. Panda, B.N. Parida, R. Padhee, R.N.P. Choudhary, J. Electron. Mater. 44, 4275 (2015)CrossRefGoogle Scholar
  43. 43.
    P.R. Dass, B. Pati, B.C. Suta, R.N.P. Choudhury, J. Mod. Phys. 3, 870 (2012)CrossRefGoogle Scholar
  44. 44.
    S. Upadhyay, A.K. Sahu, D. Kumar, O. Parkash, J. Appl. Phys. 84, 828 (1998)CrossRefGoogle Scholar
  45. 45.
    A.A. Ebnalwaled, Mater. Sci. Eng. B 174, 285 (2010)CrossRefGoogle Scholar
  46. 46.
    D. Schechter, J. Appl. Phys. 61, 591 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Crystal Growth and Material Research Laboratory, Department of PhysicsUniversity of JammuJammuIndia

Personalised recommendations