Advertisement

Optimization of the doping process and light scattering in CdS:Mn quantum dots sensitized solar cells for the efficiency enhancement

  • M. MarandiEmail author
  • P. Talebi
  • S. Bayat
Article
  • 113 Downloads

Abstract

In this work a double-layer photoanode composed of TiO2 nanocrystals (NCs) and hollow spheres (HSs) was applied in CdS:Mn sensitized solar cells. TiO2 NCs with dominant size of 25 nm were synthesized by a facile hydrothermal method. TiO2 HSs were also prepared through the liquid phase deposition (LPD) of TiO2 on carbon spheres followed by a calcination process. The double electron transport layer of quantum dot sensitized solar cells (QDSCs) was formed of a nanocrystalline TiO2 layer covered by a light scattering HSs film. The corresponding thicknesses were also controlled to be about 10 µm and 7 µm, respectively. The sensitization of photoanode with Mn doped CdS NCs were carried out by a successive ionic layer adsorption and reaction (SILAR) technique. The apparent \(\frac{\text{Mn}}{\text{Mn}+\text{Cd}}\) molar ratio was altered in a wide range of 0–9%. The corresponding QDSCs were fabricated and the doping process was optimized for the improved power conversion efficiencies. According to the results, the QDSC with a double-layer photoanode sensitized with \(\frac{\text{Mn}}{\text{Mn}+\text{Cd}}\)ratio of 7.0% showed the maximum efficiency of 3.26%. This value was increased about 61% and 18% compared to those of the reference cells with single nanocrystalline and double-layer photoanodes sensitized with un-doped CdS NCs. The reason was addressed due to the higher light scattering and Mn related electron energy states within the bandgap energy of CdS NCs and the improved electron transport property of the cell. A ZnS passivating layer was also utilized as the electron blocking layer on the surface of the optimized doped photoanode with different thicknesses. It was shown that the highest energy conversion efficiency of 3.55% was achieved for three cycles of ZnS SILAR deposition.

References

  1. 1.
    I. Hod, A. Zaban, Materials and Interfaces in quantum dot sensitized solar cells: challenges. Adv. Prospects 30, 7264–7273 (2014)Google Scholar
  2. 2.
    D. Sharma, R. Jha, S. Kumar, Quantum dot sensitized solar cell: Recent advances and future perspectives in photoanode. Sol. Energy Mater. Sol. Cells. 155, 294–322 (2016)CrossRefGoogle Scholar
  3. 3.
    K.A. Sablon, J.W. Little, K.A. Olver, Z.M. Wang, V.G. Dorogan, Y.I. Mazur, G.J. Salamo, F.J. Towner, Effects of AlGaAs energy barriers on InAs/GaAs quantum dot solar cells. J. Appl. Phys. 108, 074305–074309 (2010)CrossRefGoogle Scholar
  4. 4.
    H.K. Jun, M.A. Careem, A.K. Arof, Quantum dot-sensitized solar cells perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers. Renew. Sustain. Energy Rev. 22, 148–167 (2013)CrossRefGoogle Scholar
  5. 5.
    S. Ruhle, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells. ChemPhysChem. 11, 2290–2304 (2010)CrossRefGoogle Scholar
  6. 6.
    C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)CrossRefGoogle Scholar
  7. 7.
    W.W. Yu, L. Qu, W. Guo, X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003)CrossRefGoogle Scholar
  8. 8.
    A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153–169 (2016)CrossRefGoogle Scholar
  9. 9.
    A.S. Hassanien, K.A. Aly, A.A. Akl, Study of optical properties of thermally evaporated ZnSe thin films annealed at different pulsed laser powers. J. Alloys Compd. 685, 733–742 (2016)CrossRefGoogle Scholar
  10. 10.
    Y.J. Shen, Y.L. Lee, Assembly of CdS quantum dots on to mesoscopic TiO2 films for quantum dot-sensitized solar cell application. Nanotechnology 19, 045602 (2008)CrossRefGoogle Scholar
  11. 11.
    T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. APS 46, 15578 (1992)Google Scholar
  12. 12.
    J. Nozik, Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett. 10, 2735–2741 (2010)CrossRefGoogle Scholar
  13. 13.
    J.B. Sambur, T. Novet, B.A. Parkinson, Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63–66 (2010)CrossRefGoogle Scholar
  14. 14.
    P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008)CrossRefGoogle Scholar
  15. 15.
    X. Song, M. Wang, J. Deng, Y. Ju, T. Xing, J. Ding, X. Yang, J. Shao, ZnO/PbS core/shell nanorod arrays as efficient counter electrode for quantum dot-sensitized solar cells. J. Power Sources 269, 661–670 (2014)CrossRefGoogle Scholar
  16. 16.
    A.S. Hassanien, A.A. Akl, A.H. Sáaedi, Synthesis, crystallography, microstructure, crystal defects, and morphology of BixZn1–xO nanoparticles prepared by sol–gel technique. CrystEngComm. 20, 1716–1730 (2018)CrossRefGoogle Scholar
  17. 17.
    A.S. Hassanien, A.A. Akl, Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate. Appl. Phys. A 124, 752 (2018)CrossRefGoogle Scholar
  18. 18.
    N. Singh, V. Murugadoss, S. Nemala, S. Mallick, S. Angaiah, Cu2ZnSnSe4 QDs sensitized electrospun porous TiO2 nanofibers as photoanode for high performance QDSC. Sol. Energy 171, 571–579 (2018)CrossRefGoogle Scholar
  19. 19.
    R.K. Chava, M. Kang, Ag2S quantum dot sensitized zinc oxide photoanodes for environment friendly photovoltaic devices. Mater. Lett. 199, 188–191 (2017)CrossRefGoogle Scholar
  20. 20.
    S. Pan, R. Zhou, H. Niu, L. Wan, B. Huang, Y. Huang, F. Ji, J. Xu, Hierarchical SnO2 hollow sub-microspheres for panchromatic PbS quantum dot-sensitized solar cells. J. Alloys Compd. 709, 187–196 (2017)CrossRefGoogle Scholar
  21. 21.
    M.V. Malashchonak, E.A. Streltsov, G.A. Ragoisha, M.B. Dergacheva, K.A. Urazov, Evaluation of electroactive surface area of CdSe nanoparticles on wide bandgap oxides (TiO2, ZnO) by cadmium under potential deposition. Electrochem. Commun. 72, 176–180 (2016)CrossRefGoogle Scholar
  22. 22.
    X. Zhao, R. Ma, M. Yang, H. Yang, P. Jin, Z. Li, Y. Fan, A. Du, X. Cao, Fabrication of POSS-coated CdTe quantum dots sensitized solar cells with enhanced photovoltaic properties. J. Alloys Compd. 726, 593–600 (2017)CrossRefGoogle Scholar
  23. 23.
    H. Wang, S. Yang, Y. Wang, J. Xu, Y. Huang, W. Li, B. He, S. Muhammad, Y. Jiang, Y. Tang, B. Zou, Influence of post-synthesis annealing on PbS quantum dot solar cells. Org. Electron. 42, 309–315 (2017)CrossRefGoogle Scholar
  24. 24.
    X. Jin, C. Chang, Z. Chen, Q. Li, Graphene tailored gel electrolytes for quasi-solid-state quantum dot-sensitized solar cells. Electrochim. Acta 283, 597–602 (2018)CrossRefGoogle Scholar
  25. 25.
    H. Seo, Y. Wang, G. Uchida, K. Kamataki, N. Itagaki, K. Koga, M. Shiratani, Analysis on the effect of polysulfide electrolyte composition for higher performance of Si quantum dot-sensitized solar cells. Electrochimica 95, 43–47 (2013)CrossRefGoogle Scholar
  26. 26.
    P.R. Nikam, P.K. Baviskar, S. Majumder, J.V. Sali, B.R. Sankapal, SILAR controlled CdSe nanoparticles sensitized ZnO nanorods photoanode for solar cell application: electrolyte effect. J. Colloid Interface Sci. 524, 148–155 (2018)CrossRefGoogle Scholar
  27. 27.
    L. Zhao, L. Zhao, W. Xue, W. Fang, Y. Wang, Y. Li, N-doped carbon@Cu nanocomposites as counter electrode catalysts in quantum dot-sensitized solar cells. Sol. Energy 169, 505–511 (2018)CrossRefGoogle Scholar
  28. 28.
    M. Samadpour, S. Arabzade, Graphene/CuS/PbS nanocomposite as an effective counter electrode for quantum dot sensitized solar cells. J. Alloys Compd. 696, 369–375 (2017)CrossRefGoogle Scholar
  29. 29.
    H. Guo, R. Zhou, Y. Huang, L. Wan, W. Gan, H. Niu, J. Xu, Electrodeposited CuInSe2 counter electrodes for efficient and stable quantum dot-sensitized solar cells. Ceram. Int. 44, 16092–16098 (2018)CrossRefGoogle Scholar
  30. 30.
    Y. Zhang, X. Zhong, D. Zhang, W. Duan, X. Li, S. Zh, J. Wang, TiO2 nanorod arrays/ZnO nanosheets heterostructured photoanode for quantum-dot-sensitized solar cells. Sol. Energy 166, 371–378 (2018)CrossRefGoogle Scholar
  31. 31.
    S. Li, Z. Chen, T. Li, H. Gao, C. Wei, W. Li, W. Kong, W. Zhang, Vertical nanosheet-structured ZnO/TiO2 photoelectrodes for highly efficient CdS quantum dot sensitized solar cells. Electrochim. Acta 127, 362–368 (2014)CrossRefGoogle Scholar
  32. 32.
    Y. Zhang, S. Lin, W. Zhang, Y. Zhang, F. Qi, S. Wu, Q. Pei, T. Feng, X.M. Song, Mesoporous titanium oxide microspheres for high-efficient cadmium sulfide quantum dot-sensitized solar cell and investigation of its photovoltaic behavior. Electrochim. Acta 150, 167–172 (2014)CrossRefGoogle Scholar
  33. 33.
    Z. Peng, X. Chen, Y. Liu, J. Chen, J. Chen, Balance on the charge generation, separation and transfer performance of different TiO2 nanostructures in quantum dot sensitized solar cells. Mater. Res. Bull. 94, 463–471 (2017)CrossRefGoogle Scholar
  34. 34.
    N.S. Mohamed Mustakim, C.A. Ubani, S. Sepeai, N.A. Ludin, M.A. Mat Teridi, M.A. Ibrahim, Quantum dots processed by SILAR for solar cell applications. Sol. Energy 163, 256–270 (2018)CrossRefGoogle Scholar
  35. 35.
    H.T. Tung, Quantum dots solar cells based On CdS TiO2 photoanode. Int. J. Latest Res. Sci. Technol. 3, 15–18 (2014)Google Scholar
  36. 36.
    K.J. Sun, Y. Jiang, X. Zhong, J.S. Hu, L.J. Wan, Three-dimensional nanostructured electrodes for efficient quantum- dot-sensitized solar cells. Nano Energy 12, 22 (2016)Google Scholar
  37. 37.
    A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J. Am. Chem. Soc. 130, 4007–4015 (2008)CrossRefGoogle Scholar
  38. 38.
    F. Ji, R. Zhou, H. Niu, L. Wan, H. Guo, X. Mao, W. Gan, J. Xu, Oriented rutile TiO2 nanorod arrays for efficient quantum dot-sensitized solar cells with extremely high open-circuit voltage. Ceram. Int. 42, 12194–12201 (2016)CrossRefGoogle Scholar
  39. 39.
    C. Chen, L. Wang, F. Li, L. Ling, Improving conversion efficiency of CdS quantum dots-sensitized TiO2 nanotube arrays by doping with Zn2+ and decorating with ZnO nanoparticles. Mater. Chem. Phys. 146, 531–537 (2014)CrossRefGoogle Scholar
  40. 40.
    T. Shu, P. Xiang, Z.M. Zhou, H. Wang, G.H. Liu, H.W. Han, Y.D. Zhao, Mesoscopic nitrogen-doped TiO2 spheres for quantum dot-sensitized solar cells. Electrochim. Acta 68, 166–171 (2012)CrossRefGoogle Scholar
  41. 41.
    G. Xiuquan, S. Duanming, Z. Yulong, Q. Yinghuai, Quantum dot sensitized solar cells based on CdS sensitized TiO2 nanorod arrays. Rare Metal Mater. Eng. 43, 0525–0529 (2014)CrossRefGoogle Scholar
  42. 42.
    L. Yu, Z. Li, Y. Liu, F. Cheng, S. Sun, Mn-doped CdS quantum dots sensitized hierarchical TiO2 flower-rod for solar cell application. Appl. Surf. Sci. 305, 359 (2014)CrossRefGoogle Scholar
  43. 43.
    Y.F. Xu, W. Qi, H.S. Rao, H.Y. Chen, D.B. Kuangn, C.Y. Su, CdS/CdSe co-sensitized TiO2 nanowire-coated hollow Spheres exceeding 6% photovoltaic performance. Nano Energy 11, 621–630 (2015)CrossRefGoogle Scholar
  44. 44.
    Y. Huang, J. Chen, W. Zou, L. Zhang, L. Hu, M. He, L. Gu, J. Deng, X. Xing, TiO2/CdS porous hollow microspheres rapidly synthesized by salt-assistant aerosol decomposition method for excellent photocatalytic hydrogen evolution performance. Dalton Trans. 45, 1160–1165 (2016)CrossRefGoogle Scholar
  45. 45.
    R. Zhou, Q. Zhang, E. Uchaker, L. Yang, N. Yin, Y. Chen, M. Yin, G. Cao, Photoanodes with mesoporous TiO2 beads and nanoparticles for enhanced performance of CdS/CdSe quantum dot co-sensitized solar cells. Electrochim. Acta 135, 284–292 (2014)CrossRefGoogle Scholar
  46. 46.
    H. Hua, H. Shen, C. Cui, D. Liang, P. Li, S. Xu, W. Tang, Preparation and photoelectrochemical properties of TiO2 hollow spheres embedded TiO2/CdS photoanodes for quantum-dot-sensitized solar cells. J. Alloys Compd. 560, 1–5 (2013)CrossRefGoogle Scholar
  47. 47.
    X. Xu, G. Jiang, Q. Wan, J. Shi, G. Xu, L. Miao, Mesoporous titania hollow spheres applied as scattering layers in quantum dots sensitized solar cells. Mater. Chem. Phys. 136, 1060–1066 (2012)CrossRefGoogle Scholar
  48. 48.
    H. Han, P. Sudhagar, T. Song, Y. Jeon, I. Mora-Sero, F. Fabregat-Santiago, J. Bisquert, Y.S. Kang, U. Paik, Three dimensional-TiO2 nanotube array photoanode architectures assembled on a thin hollow nanofibrous backbone and their performance in quantum dot-sensitized solar cells. Chem. Commun. 49, 2810–2812 (2013)CrossRefGoogle Scholar
  49. 49.
    Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda, Q. Meng, Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. Phys. Chem. Chem. Phys. 13, 4659–4667 (2011)CrossRefGoogle Scholar
  50. 50.
    M. Marandi, F. Ahangarani, M. Davoudi, Fabrication of submicron/micron size cavities included TiO2 photoelectrodes and optimization of light scattering to improve the photovoltaic performance of CdS quantum dot sensitized solar cells. J. Electroanal. Chem. 799, 167–174 (2017)CrossRefGoogle Scholar
  51. 51.
    M. Marandi, E. Rahmani, F. Ahangarani, Optimization of the photoanode of CdS quantum dot-sensitized solar cells using light-scattering TiO2 hollow spheres. J. Electron. Mater. 46, 6769–6783 (2017)CrossRefGoogle Scholar
  52. 52.
    H. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X. Li, Y. Bando, D. Golberg, Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells. J. Am. Chem. Soc. 133, 19102–19109 (2011)CrossRefGoogle Scholar
  53. 53.
    Y. Li, L. Wei, X. Chen, R. Zhang, X. Sui, Y. Chen, J. Jiao, L. Mei, Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays. Nanoscale Res. Lett. 8, 67–73 (2013)CrossRefGoogle Scholar
  54. 54.
    M.M. Aslam, S.M. Ali, A. Fatehmulla, W.A. Farooq, M. Atif, A.M. Al-Dhafiri, M.A. Shar, Growth and characterization of layer by layer CdS–ZnS QDs on dandelion like TiO2 microspheres for QDSSC application. Mater. Sci. Semicond. Process. 36, 57–64 (2015)CrossRefGoogle Scholar
  55. 55.
    Y. Sun, J. Yang, L. Yang, J. Cao, Z. Zhang, Z. Wang, H. Song, ZnS:Mn2+ nanoparticles as compact layer to enhance the conversion efficiency of CdS QD-sensitized solar cells. Mater. Lett. 98, 226–229 (2013)CrossRefGoogle Scholar
  56. 56.
    J. Tian, L. Lv, C. Fei, Y. Wang, X. Liu, G. Cao, A highly efficient (> 6%) Cd1−xMnxSe quantum dot sensitized solar cell. J. Mater. Chem. A 2, 19653–19659 (2004)CrossRefGoogle Scholar
  57. 57.
    K. Surana, I.T. Salisu, R.M. Mehra, B. Bhattacharya, A simple synthesis route of low temperature CdSe-CdS core-shell quantum dots and its application in solar cell. Opt. Mater. 82, 135–140 (2018)CrossRefGoogle Scholar
  58. 58.
    G.R. Bhand, N.B. Chaure, Synthesis of CdTe, CdSe and CdTe/CdSe core/shell QDs from wet chemical colloidal method. Mater. Sci. Semicond. Process. 68, 279–287 (2017)CrossRefGoogle Scholar
  59. 59.
    N. Zhou, G. Chen, X. Zhang, L. Cheng, Y. Luo, D. Li, Q. Meng, Highly efficient PbS/CdS co-sensitized solar cells based on photoanodes with hierarchical pore distribution. Electrochem. Commun. 20, 97–100 (2012)CrossRefGoogle Scholar
  60. 60.
    K. Jung, J. Lee, Y.M. Kim, J. Kim, C.U. Kim, M.J. Lee, Influence of defects and nanoscale strain on the photovoltaic properties of CdS/CdSe nanocomposite co-sensitized ZnO nanowire solar cells. Electrochim. Acta 220, 500–510 (2016)CrossRefGoogle Scholar
  61. 61.
    F. Huang, J. Hou, Q. Zhang, Y. Wang, R.C. Massé, S. Peng, H. Wang, J. Liu, G. Cao, Doubling the power conversion efficiency in CdS/CdSe quantum dot sensitized solar cells with a ZnSe passivation layer. Nano Energy 26, 114–122 (2016)CrossRefGoogle Scholar
  62. 62.
    F. Huang, J. Hou, H. Wang, H. Tang, Z. Liu, L. Zhang, Q. Zhang, S. Peng, J. Liu, G. Cao, Impacts of surface or interface chemistry of ZnSe passivation layer on the performance of CdS/CdSe quantum dot sensitized solar cells. Nano Energy 32, 433–440 (2017)CrossRefGoogle Scholar
  63. 63.
    K. Surana, R.M. Mehra, B. Bhattacharya, Quantum Dot Solar Cells with size tuned CdSe QDs exhibiting 1.51 V. Mater. Today 5, 9108–9113 (2018)Google Scholar
  64. 64.
    H. Wei, G. Wang, Y. Luo, D. Li, Q. Meng, Investigation on interfacial charge transfer process in CdSexTe1-x alloyed quantum dot sensitized solar cells. Electrochim. Acta 173, 156–163 (2015)CrossRefGoogle Scholar
  65. 65.
    K. Zhao, Z. Pan, I. Mora-Sero, E. Canovas, H. Wang, Y. Song, X.Q. Gong, J. Wang, M. Bonn, J. Bisquert, X. Zhong, Boosting power conversion efficiencies of quantum dot sensitized solar cells beyond 8% by recombination control. J. Am. Chem. Soc. 137, 5602–5609 (2015)CrossRefGoogle Scholar
  66. 66.
    J. Tian, Q. Zhang, E. Uchaker, R. Gao, X. Qu, S. Zhang, G. Cao, Architectured ZnO photoelectrode for high efficiency quantum dot sensitized solar cells. Energy Environ. Sci. 6, 3542–3547 (2013)CrossRefGoogle Scholar
  67. 67.
    M.A. Leontiadou, E.J. Eyrrell, C.T. Smith, D. Espinobarro-Velazquez, R. Page, P. O’Brien, J. Miloszewski, T. Walsh, D. Binks, S. Tomić, Influence of elevated radiative lifetime on efficiency of CdSe/CdTe Type II colloidal quantum dot based solar cells. Sol. Energy Mater. Sol. Cells 159, 657–663 (2017)CrossRefGoogle Scholar
  68. 68.
    Z. Li, L. Yu, Y. Liu, S. Sun, CdS/CdSe Quantum dots Co-sensitized TiO2 nanowire/nanotube solar cells with enhanced efficiency. Electrochim. Acta 129, 379–388 (2014)CrossRefGoogle Scholar
  69. 69.
    H. Choi, C. Nahm, J. Kim, C. Kim, S. Kang, T. Hwang, B. Park, Review paper: toward highly efficient quantum-dot- and dye- sensitized solar cells. Curr. Appl. Phys. 13, S2–S13 (2013)CrossRefGoogle Scholar
  70. 70.
    A.J. Nozik, Quantum dot solar cells. Phys. E 14, 115–120 (2002)CrossRefGoogle Scholar
  71. 71.
    T. Shen, J. Tian, L. Lv, C. Fei, Y. Wang, T. Pullerits, G. Cao, Investigation of the role of Mn dopant in CdS quantum dot sensitized solar cell. Electrochim. Acta 191, 62–69 (2016)CrossRefGoogle Scholar
  72. 72.
    P.K. Santra, P.V. Kamat, Mn-doped quantum dot sensitized solar cells: a strategy to boost Efficiency over 5%. J. Am. Chem. Soc. 134, 2508–2511 (2012)CrossRefGoogle Scholar
  73. 73.
    J.-W. Lee, D.-Y. Son, T.K. Ahn, H.-W. Shin, I.Y. Kim, S.-J. Hwang, M.J. Ko, S. Sul, H. Han, N.-G. Park, Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Sci. Rep. 3, 1050 (2013)CrossRefGoogle Scholar
  74. 74.
    M.V. Haritha, C.V.V.M. Gopi, C.V. Thulasi-Varma, S.K. Kim, H.J. Kim, Influence of Mn+ 2 incorporation in CdSe quantum dots for high performance of CdS–CdSe quantum dot sensitized solar cells. J. Photochem. Photobiol. A 315, 34–41 (2016)CrossRefGoogle Scholar
  75. 75.
    Z. Huang, X. Zou, H. Zhou, A strategy to achieve superior photocurrent by Cu-doped quantum dot sensitized solar cells. Mater. Lett. 95, 139–141 (2013)CrossRefGoogle Scholar
  76. 76.
    Q. Chen, J. Song, C. Zhou, Q. Pang, L. Zhou, Application research of CdS:Eu3+ quantum dots-sensitized TiO2 nanotube solar cells. Mater. Sci. Semicond. Process. 46, 53–58 (2016)CrossRefGoogle Scholar
  77. 77.
    M.P. Abdul Muthalif, Y.S. Lee, C.D. Sunesh, H.J. Kim, Y. Choe, Enhanced photovoltaic performance of quantum dot-sensitized solar cells with a progressive reduction of recombination using Cu-doped CdS quantum dots. Appl. Surf. Sci. 396, 582–589 (2017)CrossRefGoogle Scholar
  78. 78.
    Y. Chen, Q. Tao, W. Fu, H. Yang, Synthesis of PbS/Ni2+ doped CdS quantum dots cosensitized solar cells: Enhanced power conversion efficiency and durability. Electrochim. Acta 173, 812–818 (2015)CrossRefGoogle Scholar
  79. 79.
    Z. Quan, Z. Wang, P. Yang, J. Lin, J. Fang, Synthesis and characterization of high-quality ZnS, ZnS:Mn2+, and ZnS:Mn2+/ZnS (Core/Shell) luminescent nanocrystals. Inorg. Chem. 46, 1354–1360 (2007)CrossRefGoogle Scholar
  80. 80.
    J. Hou, H. Zhao, F. Huang, Q. Jing, H. Cao, Q. Wu, S. Peng, G. Cao, High performance of Mn-doped CdSe quantum dot sensitized solar cells based on the vertical ZnO nanorod arrays. J. Power Sources 325, 438–445 (2016)CrossRefGoogle Scholar
  81. 81.
    Z. Li, Y.F. Wang, X.W. Wang, Z. Yang, J.H. Zeng, Doping as an effective recombination suppressing strategy for performance enhanced quantum dots sensitized solar cells. Mater. Lett. 221, 42–45 (2018)CrossRefGoogle Scholar
  82. 82.
    G. Wang, H. Wei, Y. Luo, H. Wu, D. Li, X. Zhong, Q. Meng, A strategy to boost the cell performance of CdSexTe1–x quantum dot sensitized solar cells over 8% by introducing Mn modified CdSe coating layer. J. Power Sources 302, 266–273 (2016)CrossRefGoogle Scholar
  83. 83.
    M. Samadpour, G. Rezanejade Bardajee, S. Ghiasvand Gheysare, P. Shafagh, Transition metal doping for enhancing quantum dot sensitized solar cells performance. J. Phys. D 48, 095101–095107 (2015)CrossRefGoogle Scholar
  84. 84.
    N. Firoozi, H. Dehghani, M. Afrooz, Cobalt-doped cadmium sulfide nanoparticles as efficient strategy to enhance performance of quantum dot sensitized solar cells. J. Power Sources 278, 98–103 (2015)CrossRefGoogle Scholar
  85. 85.
    P.K. Santra, Y.S. Chen, Role of Mn2+ in doped quantum dot solar cell. Electrochim. Acta 146, 654–658 (2014)CrossRefGoogle Scholar
  86. 86.
    M.N.S. Sabet, M. Marandi, F. Ahmadloo, Fabrication of dye sensitized solar cells with different photoanode compositions using hydrothermally grown and P25 TiO2 nanocrystals. Eur. Phys. J. Appl. Phys. 69, 20401 (2015)CrossRefGoogle Scholar
  87. 87.
    M. Marandi, S. Feshki, M.N.S. Sabet, Z. Anajafi, N. Taghavinia, Synthesis of TiO2 hollow spheres using titanium tetraisopropoxide: fabrication of high efficiency dye sensitized solar cells with photoanodes of different nanocrystalline TiO2 sub layers. RSC Adv. 4, 58064 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceArak UniversityArakIran

Personalised recommendations