Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18751–18759 | Cite as

Synthesis and comparison of photocatalytic activity under UV–Visible or visible light irradiation for Bi3TaO7 and Bi2YTaO7 photocatalysts

  • Xiangjie Jin
  • Junxu Ma
Article
  • 35 Downloads

Abstract

The synthesis and photocatalytic activity of Bi3TaO7 and Bi2YTaO7 were reported in this work. Bi3TaO7 and Bi2YTaO7 nanowires with a cubic phase were synthesized by a solvothermal method. Under ultraviolet–visible (UV–Vis) or visible light irradiation, Bi3TaO7 and Bi2YTaO7 nanowires show excellently photocatalytic activities for rhodamine B (RhB) and methyl orange (MO). The electron spin resonance measurements demonstrate that ·OH and ·O2− radicals are responsible for the degradation of RhB and MO. The formation of ·O2− is induced by the defect fluorite-type structure with distorted octahedral coordination geometry for Bi3TaO7, which exhibit intrinsic oxygen vacancies and disorders in both anionic and cationic lattices. The UV–Vis diffuse reflectance spectra reflect that Bi2YTaO7 has lower band gap energy than that of Bi3TaO7. Due to the lower band gap energy and the special 4f electron configuration of Y3+, Bi2YTaO7 shows higher photocatalytic activity than that of Bi3TaO7.

References

  1. 1.
    C.A. Martínez-Huitle, E. Brillas, Appl. Catal. B 87, 105 (2009)CrossRefGoogle Scholar
  2. 2.
    G. McMullan, C. Meehan, A. Conneely, N. Kirby, T. Robinson, P. Nigam, I. Banat, R. Marchant, W. Smyth, Appl. Microbiol. Biotechnol. 56, 81 (2001)CrossRefGoogle Scholar
  3. 3.
    P. Peralta-Zamora, A. Kunz, S.G. de Moraes, R. Pelegrini, P.C. Molerio, J. Reyes, N. Duran, Chemosphere 38, 835 (1999)CrossRefGoogle Scholar
  4. 4.
    N. Serpone, A.V. Emeline, J. Phys. Chem. Lett. 3, 673 (2012)CrossRefGoogle Scholar
  5. 5.
    Y. Liu, G. Zhu, J. Gao, M. Hojamberdiev, R. Zhu, X. Wei, Q. Guo, P. Liu, Appl. Catal. B 200, 72 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Fujishima, Nature 238, 37 (1972)CrossRefGoogle Scholar
  7. 7.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)CrossRefGoogle Scholar
  8. 8.
    J. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu, M. Antonietti, X. Fu, X. Wang, Energy Environ. Sci. 4, 675 (2011)CrossRefGoogle Scholar
  9. 9.
    Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng, K. Wei, Inorg. Chem. 46, 6980 (2007)CrossRefGoogle Scholar
  10. 10.
    R. Costi, A.E. Saunders, E. Elmalem, A. Salant, U. Banin, Nano Lett. 8, 637 (2008)CrossRefGoogle Scholar
  11. 11.
    X. An, J.C. Yu, Y. Wang, Y. Hu, X. Yu, G. Zhang, J. Mater. Chem. 22, 8525 (2012)CrossRefGoogle Scholar
  12. 12.
    J. Li, Y. Yu, L. Zhang, Nanoscale 6, 8473 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Lu, M. Liu, S. Zhou, X. Zhou, Y. Yang, Dyes Pigments 136, 1 (2017)CrossRefGoogle Scholar
  14. 14.
    A.M. Yang, Y. Han, S.S. Li, H.W. Xing, Y.H. Pan, W.X. Liu, J. Alloys Compd. 695, 915 (2017)CrossRefGoogle Scholar
  15. 15.
    Z. He, X.Y. Sun, X. Gu, J. Mater. Sci. Mater. Electron. 28, 13950 (2017)CrossRefGoogle Scholar
  16. 16.
    G. Han, W. Wang, B. Liu, C. Pei, H. Zhao, J. Liu, H. Yang, Appl. Catal. B 208, 94 (2017)CrossRefGoogle Scholar
  17. 17.
    B. Luo, M. Chen, Z. Zhang, J. Xu, D. Li, D. Xu, W. Shi, Dalton Trans. 46, 8431 (2017)CrossRefGoogle Scholar
  18. 18.
    G. Zhang, J. Yang, S. Zhang, Q. Xiong, B. Huang, J. Wang, W. Gong, J. Hazard. Mater. 172, 986 (2009)CrossRefGoogle Scholar
  19. 19.
    Z. Liu, H. Li, K. Liu, H. Yu, K. Cheng, Sol. Energy 142, 61 (2017)CrossRefGoogle Scholar
  20. 20.
    Z. Liu, D. Wu, H. Yu, W. Ma, G. Gin, Energy Build. 137, 312 (2018)CrossRefGoogle Scholar
  21. 21.
    Z. Liu, W. Xu, X. Zhai, C. Qian, X. Chen, Renew. Energy 101, 1131 (2017)CrossRefGoogle Scholar
  22. 22.
    Z. Liu, K. Cheng, H. Li, G. Cao, D. Wu, Y. Shi, Environ. Sci. Pollut. Res. 25, 3510 (2018)CrossRefGoogle Scholar
  23. 23.
    Y. Cao, N. Liu, J. Tian, Y. Liu, X. Zhang, Chem. Phys. Lett. 640, 180 (2015)CrossRefGoogle Scholar
  24. 24.
    L. Chen, J. Wang, D. Meng, Y. Xing, C. Wang, F. Li, Y. Wang, X. Wu, Mater. Lett. 147, 1 (2015)CrossRefGoogle Scholar
  25. 25.
    A. Walsh, T. Yan, M.N. Huda, M.M. Al-Jassim, S.-H. Wei, Chem. Mater. 21, 547 (2009)CrossRefGoogle Scholar
  26. 26.
    Z. Zhang, W. Wang, E. Gao, M. Sheng, J. Xu, J. Hazard. Mater. 196, 255 (2011)CrossRefGoogle Scholar
  27. 27.
    Y. Mi, L. Wen, Z. Wang, D. Cao, Y. Fang, Y. Lei, Appl. Catal. B 176–177, 331 (2015)CrossRefGoogle Scholar
  28. 28.
    X. Tao, Y. Zhao, L. Mu, S. Wang, R. Li, C. Li, Adv. Energy Mater. 8, 1701392 (2018)CrossRefGoogle Scholar
  29. 29.
    L. Chen, J. He, Y. Liu, P. Chen, C.-T. Au, S.-F. Yin, Chin. J. Catal. 37, 780 (2016)CrossRefGoogle Scholar
  30. 30.
    G. Zhang, M. Li, S. Yu, S. Zhang, B. Huang, J. Yu, J. Colloid Interface Sci. 345, 476 (2010)Google Scholar
  31. 31.
    S. Zhang, G. Zhang, S. Yu, X. Chen, X. Zhang, J. Phys. Chem. C 113, 20029 (2009)CrossRefGoogle Scholar
  32. 32.
    B. Luo, M. Chen, Z. Zhang, Y. Hong, T. Lv, W. Shi, J. Solid State Chem. 256, 203 (2017)CrossRefGoogle Scholar
  33. 33.
    A.D. Liyanage, S.D. Perera, K. Tan, Y. Chabal, K.J. Balkus Jr., ACS Catal. 4, 577 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Shen, Q. Wei, W. Guo, L. Fan, D. Liu, S. Li, J. Alloys Compd. 618, 311 (2015)CrossRefGoogle Scholar
  35. 35.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  36. 36.
    B. Luo, D. Xu, D. Li, G. Wu, M. Wu, W. Shi, M. Chen, ACS Appl. Mater. Interfaces 7, 17061 (2015)CrossRefGoogle Scholar
  37. 37.
    H. Narayan, H. Alemu, L. Macheli, M. Thakurdesai, T.K. Gundu Rao, Nanotechnology 20, 255601 (2009)CrossRefGoogle Scholar
  38. 38.
    H. Xu, H. Li, L. Xu, C. Wu, G. Sun, Y. Xu, J. Chu, Ind. Eng. Chem. Res. 48, 10771 (2009)CrossRefGoogle Scholar
  39. 39.
    H. Shi, T. Zhang, T. An, B. Li, X. Wang, J. Colloid Interface Sci. 380, 121 (2012)CrossRefGoogle Scholar
  40. 40.
    S. Obregón, G. Colón, Appl. Catal. A 501, 56 (2015)CrossRefGoogle Scholar
  41. 41.
    Z. Hu, D. Chen, S. Wang, N. Zhang, L. Qin, Y. Huang, Mater. Sci. Eng. B 220, 1 (2017)CrossRefGoogle Scholar
  42. 42.
    Y. Yang, J. Li, B. Liu, Y. Zhang, X. Lv, L. Wei, X. Wang, J. Xu, H. Yu, Y. Hu, H. Zhang, L. Ma, J. Wang, Chem. Phys. Lett. 685, 89 (2017)CrossRefGoogle Scholar
  43. 43.
    Y. Yang, X. Lv, L. Wei, J. Xu, H. Yu, Y. Hu, H. Zhang, B. Liu, X. Wang, Q. Li, Solid State Commun. 269, 35 (2018)CrossRefGoogle Scholar
  44. 44.
    Y. Yang, B. Liu, Y. Zhang, X. Lv, L. Wei, X. Wang, Superlattices Microstruct. 90, 227 (2016)CrossRefGoogle Scholar
  45. 45.
    J.J. Chambers, G.N. Parsons, Appl. Phys. Lett. 77, 2385 (2000)CrossRefGoogle Scholar
  46. 46.
    J. Zhao, B. Yao, Q. He, T. Zhang, J. Hazard. Mater. 229–230, 151 (2012)CrossRefGoogle Scholar
  47. 47.
    Z. Ai, W. Ho, S. Lee, Appl. Surf. Sci. 263, 266 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.North China University of Water Resources and Electric PowerZhengzhouChina

Personalised recommendations