Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18708–18717 | Cite as

Thermal behavior and comparative study on the visible light driven photocatalytic performance of SnS2–ZnS nanocomposite against the degradation of anionic and cationic dyes

  • D. Prabha
  • K. Usharani
  • S. Ilangovan
  • V. Narasimman
  • S. Balamurugan
  • M. Suganya
  • J. Srivind
  • V. S. Nagarethinam
  • A. R. BaluEmail author


A comparative study performed on the photocatalytic performance of the SnS2–ZnS nanocomposite against metanil yellow and rhodamine B dyes has been reported in this paper. Pure SnS2, ZnS nanopowders and SnS2–ZnS nanocomposite has been synthesized by a simple and cost-effective chemical method using tin(II) chloride, thiourea and zinc chloride as the precursor salts. Characterization techniques such as XRD, SEM, TEM, XPS, FTIR and PL were used to study the structure, surface morphology, chemical composition, functional groups and defects in the samples. Visible light irradiated photocatalytic tests confirmed that due to the enhanced separation efficiency of photoexcited electron–hole pairs the composite exhibits degradation efficiency better than pure SnS2 and ZnS nanopowders against MY and RhB dyes. Also, the composite showed better degradation efficiency against metanil yellow than rhodamine B after 180 min visible light irradiation. Reusability tests confirmed that the SnS2–ZnS composite photocatalyst is more stable and can be used for practical applicatons.



The authors thank the SAIF, Cochin and Mr. Vincent Sagayaraj, St. Joseph’s College, Trichy for the TEM and FTIR analyses.


  1. 1.
    N.M. Hosny, A. Dahshan, J. Mol. Struct. 78, 1085 (2015)Google Scholar
  2. 2.
    R. Luccna, F. Fresno, J.C. Conesa, Appl. Catal. A Gen. 111, 415–416 (2012)Google Scholar
  3. 3.
    Z.C. Wu, J.J. Xw, Y.I. Zhang, RSC Adv. 5, 24640 (2015)CrossRefGoogle Scholar
  4. 4.
    J.M. Mali, S.S. Arbuj, J.D. Ambedkar, Sci. Adv. Mater. 5, 1994 (2013)CrossRefGoogle Scholar
  5. 5.
    X. Li, J. Zhu, H. Li, Appl. Catal. B Environ. 174, 123–124 (2012)Google Scholar
  6. 6.
    X.Q. An, C.Y. Jimmy, J.W. Tang, J. Mater. Chem. A 2, 1000 (2014)CrossRefGoogle Scholar
  7. 7.
    W.M. Du, D.H. Demg, Z.T. Han, W. Xiao, C. Bian, X.F. Qian, CrystEngComm. 13, 2071 (2011)CrossRefGoogle Scholar
  8. 8.
    D. Prabha, K. Usharani, S. Ilangovan, M. Suganya, S. Balamurugan, J. Srivind, V.S. Nagarethinam, A.R. Balu, Mater. Tech. 33, 333 (2018)CrossRefGoogle Scholar
  9. 9.
    S.W. Hu, L.W. Yang, Y. Tian, X.I. Wei, J.W. Ding, J.X. Zhing, P.K. Chu, J. Colloid Inter. Sci. 431, 42 (2014)CrossRefGoogle Scholar
  10. 10.
    L. Yin, D. Zhang, D. Wang, X. Kong, J. Huang, F. Wang, Y. Wu, Mater. Sci. Eng. B 208, 15 (2016)CrossRefGoogle Scholar
  11. 11.
    W.B. Bai, L.F. Cai, C.X. Wu, X.Q. Xiao, X.I. Fan, K.Z. Chen, J.H. Lin, Mater. Lett. 124, 177 (2014)CrossRefGoogle Scholar
  12. 12.
    P. Balaz, M. Balaz, E. Dulkova, A. Zorkovska, J. Kovac, P. Hronic, J. Kovac Jr., M. Caplovicova, J. Mijzis, G. Mojzisova, A. Eliyas, N.G. Kostova, Mater. Sci. Eng. C 58, 1016 (2016)CrossRefGoogle Scholar
  13. 13.
    D. Lin, H. Wu, R. Zhang, W. Pan, J. Am. Ceram. Soc. 93, 3384 (2010)CrossRefGoogle Scholar
  14. 14.
    S.V. Prabhakar Vattikutti, C. Byon, S. Jeon, Phys. B 502, 103 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Suganya, A.R. Balu, S. Anitha, D. Prabha, S. Balamurugan, B. Priyanka, J. Srivind, V.S. Nagarethinam, Mater. Sci. Eng. B 229, 118 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Suganya, A.R. Balu, D. Prabha, S. Anitha, S. Balamurugan, J. Srivind, J. Mater. Sci. Mater. Electron. 29, 1065 (2018)CrossRefGoogle Scholar
  17. 17.
    M. Suganya, A.R. Balu, D. Prabha, S. Anitha, S. Balamurugan, J. Srivind, J. Mater. Sci. Mater. Electron. 29, 4312 (2018)CrossRefGoogle Scholar
  18. 18.
    M. Kappayee, G.K. Vanathi Natchiyar, V. Ramasamy, Appl. Surf. Sci. 257, 6779 (2011)CrossRefGoogle Scholar
  19. 19.
    D. Prabha, S. Ilangovan, J. Srivind, M. Suganya, S. Anitha, S. Balamurugan, A.R. Balu, J. Mater. Sci. Mater. Electron. 28, 15556 (2017)CrossRefGoogle Scholar
  20. 20.
    N. Qutup, B.M. Prizada, K. Umar, O. Mehraj, M. Muneer, S. Sabir, Phys. E 74, 74 (2015)CrossRefGoogle Scholar
  21. 21.
    P. Kar, S. Farsinezhad, X. Zhang, K. Shankar, Nanoscale 6, 14305 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Wang, P. Wu, L. Sun, W. Zhou, J. Phys. Chem. Sol. 92, 1 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Sathish, S. Mitani, T. Tomai, I. Honma, J. Phys. Chem. C 116, 12475 (2012)CrossRefGoogle Scholar
  24. 24.
    D. Lin, H. Wu, R. Zhang, W. Zhang, W. Pan, J. Am. Ceram. Soc. 93, 3384 (2010)CrossRefGoogle Scholar
  25. 25.
    S.H. Jung, E. Oh, K.H. Lee, Y. Yang, C.G. Park, W.J. Park, S.H. Jeong, Cryst. Growth Des. 8, 265 (2008)CrossRefGoogle Scholar
  26. 26.
    K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, R. Ladchumananandasivam, U. Umbelino, M. De Gomes, Maaza, Ceram. Int. 42, 8385 (2016)CrossRefGoogle Scholar
  27. 27.
    D.V. Sathish, Ch Ramakrishna, Ch Venkatareddy, T. Raghavendra Rao, P.S. Rao, R.V.S.S.M. Ravikumar, J. Mol. Struct. 1034, 57 (2013)CrossRefGoogle Scholar
  28. 28.
    J.Z. Mbese, P.A. Ajibade, Polymers 6, 2332 (2014)CrossRefGoogle Scholar
  29. 29.
    G.I. Andrade, E.F. Barbosa-Stancioli, A.A.P. Mansur, W.I. Vasconcelos, H.S. Mansur, J. Mater. Sci. 43, 450 (2008)CrossRefGoogle Scholar
  30. 30.
    G. Kiruthiga, C. Manoharan, C. Raju, J. Jayabharathi, S. Dhanapandian, Spectrochim. Acta Part A Mol. Biomol. Spect. 129, 415 (2014)CrossRefGoogle Scholar
  31. 31.
    S. Ummartyotin, N. Bunnak, J. Juntaro, M. Sain, H. Manuspiya, Sol. State Sci. 14, 299 (2012)CrossRefGoogle Scholar
  32. 32.
    R.C. Pawar, J.S. Shaikh, A.V. Moholkar, S.M. Pawar, J.H. Kim, J.Y. Patil, S.S. Suryavanshi, P.S. Papil, Sens. Actuators B 151, 212 (2010)CrossRefGoogle Scholar
  33. 33.
    H. Hu, X. Huang, C. Deng, X. Chen, Y. Qian, Mater. Chem. Phys. 106, 58 (2007)CrossRefGoogle Scholar
  34. 34.
    P.A. Hu, Y.Q. Liu, L. Fu, L.C. Cao, D.B. Zhu, J. Phys. Chem. B 108, 936 (2004)CrossRefGoogle Scholar
  35. 35.
    J. Manam, V. Chatterjee, S. Das, A. Choubey, S.K. Sharma, J. Lumin. 130, 292 (2010)CrossRefGoogle Scholar
  36. 36.
    T. Sivaraman, V.S. Nagarethinam, A.R. Balu, Surf. Eng. 32, 596 (2016)CrossRefGoogle Scholar
  37. 37.
    Y. Wang, M. Herron, J. Phys. Chem. 92, 4988 (1988)CrossRefGoogle Scholar
  38. 38.
    S. Anitha, M. Suganya, D. Prabha, J. Srivind, S. Balamurugan, A.R. Balu, Mater. Chem. Phys. 211, 88 (2018)CrossRefGoogle Scholar
  39. 39.
    N. Tian, H.W. Hang, Y. He, Y.X. Guo, Y.H. Zhang, Coll. Surf. A 467, 188 (2015)CrossRefGoogle Scholar
  40. 40.
    B. Bharathi, A.K. Sankar, N. Singh, Mater. Res. Exp. 4, 085503 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. Prabha
    • 1
  • K. Usharani
    • 1
  • S. Ilangovan
    • 1
  • V. Narasimman
    • 2
  • S. Balamurugan
    • 3
  • M. Suganya
    • 2
  • J. Srivind
    • 3
  • V. S. Nagarethinam
    • 3
  • A. R. Balu
    • 3
    Email author
  1. 1.PG and Research Department of PhysicsThiru Vi Ka Govt. CollegeTiruvarurIndia
  2. 2.PG and Research Department of PhysicsGovt. Arts CollegeDharmapuriIndia
  3. 3.PG and Research Department of PhysicsAVVM Sri Pushpam CollegePoondiIndia

Personalised recommendations