Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18684–18692 | Cite as

Superconductivity of Y2O3 and BaZrO3 nanoparticles co-added YBa2Cu3O7−δ bulks prepared using co-precipitation method

  • Nurhidayah Mohd Hapipi
  • Soo Kien ChenEmail author
  • Abdul Halim Shaari
  • Mohd Mustafa Awang Kechik
  • Kar Ban Tan
  • Kean Pah Lim


In this work, polycrystalline samples of nominal composition YBa2Cu3O7−δ with co-addition of 5.0 mol% of Y2O3 and x mol% of BaZrO3 (BZO) nanoparticles (x = 0.0, 1.0, 2.0, 3.0, 5.0 and 7.0) were prepared using co-precipitation (COP) method. Data of X-ray diffraction (XRD) showed that all the samples were composed of Y-123 as the major phase and Y-211 as the minor phase. XRD peak of BZO was also observed in the samples co-added with BZO nanoparticles. Refinement of lattice parameters of a, b, and c-axis showed that the orthorhombic structure of the samples was retained without occurance of orthorhombic-tetragonal phase transition. The average grain size was increased from 0.30 ± 0.02 µm for the pure sample to 0.47 ± 0.03 µm for the sample with 7.0 mol% BZO as revealed by the scanning electron microscope images. Plots of normalized resistance versus temperature showed metallic behavior in the normal state and a single step transition in the samples. Tc-onset was decreased with co-addition of Y2O3 and BZO probably because of reduced hole concentration. The higher Josephson’s current, Io of the samples with co-addition of 0.0–2.0 mol% BZO compared with that of the pure one is likely to be due to improved grain coupling as shown by the AC susceptibility measurement. The calculated intergranular critical current density, Jcm based on the Bean critical state model is 1.88 A/cm2 at Tp = 84.8 K for the pure sample. The highest Jcm obtained is 2.10 A/cm2 at Tp = 85.4 K for 2.0 mol% BZO co-added sample.



This work is financially supported by the Universiti Putra Malaysia through the Putra-Grant (Vote no.: 9552300). N. M. Hapipi would like to acknowledge financial support from the Ministry of Education Malaysia through the MyMaster scholarship and Universiti Putra Malaysia under the Graduate Research Fellowship (GRF).


  1. 1.
    D. Galiano, Electric and Magnetic Phenomena, 1st edn. (The Rosen Publishing Group, Inc., New York, 2011), p. 51Google Scholar
  2. 2.
    Z. Liu, Z. Long, X. Li, Maglev Trains: Key Underlying Technologies (Springer, New York, 2015), pp. 29–31Google Scholar
  3. 3.
    S.M. Iqbal, S. Saleem, J. Bioeng. Biomed. Sci. 4, 1–2 (2014)Google Scholar
  4. 4.
    M.M. Sarker, W.R. Flavell, J. Supercond. 11, 209–213 (1998)CrossRefGoogle Scholar
  5. 5.
    J.R. Hull, Rep. Prog. Phys. 66, 1865 (2003)CrossRefGoogle Scholar
  6. 6.
    R.F. Klie, J.P. Buban, M. Varela, A. Franceschetti, C. Jooss, Y. Zhu, N.D. Browning, S.T. Pantelides, S.J. Pennycook, Nature 435, 475–478 (2005)CrossRefGoogle Scholar
  7. 7.
    D. Horvath, C. Harnois, J.G. Noudem, Mater. Sci. Eng. B 151, 36–39 (2008)CrossRefGoogle Scholar
  8. 8.
    P.N. Barnes, T.J. Haugan, F.J. Baca, C.V. Varanasi, R. Wheeler, F. Meisenkothen, S. Sathiraju, Physica C 469, 2029–2032 (2009)CrossRefGoogle Scholar
  9. 9.
    F. Ding, H. Gu, T. Zhang, H. Wang, F. Qu, S. Dai, X. Peng, J. Cao, J. Alloys Compd. 513, 277–281 (2012)CrossRefGoogle Scholar
  10. 10.
    W. Hong-yan, D. Fa-zhu, G. Hong-wei, Z. Teng, Chin. Phys. B 24, 097401 (2015)CrossRefGoogle Scholar
  11. 11.
    D. Abraimov, A. Ballarino, C. Barth, L. Bottura, R. Dietrich, A. Francis, J. Jaroszynski, G.S. Majkic, J. McCallister, A. Polyanskii, L. Rossi, A. Rutt, M. Santos, K. Schlenga, V. Selvamanickam, C. Senatore, A. Usoskin, Supercond. Sci. Technol. 28, 114007 (2015)CrossRefGoogle Scholar
  12. 12.
    Y. Yoshida, S. Miura, Y. Tsuchiya, Y. Ichino, S. Awaji, K. Matsumoto, A. Ichinose, Supercond. Sci. Technol. 30, 104002 (2017)CrossRefGoogle Scholar
  13. 13.
    X. Obradors, T. Puig, Z. Li, C. Pop, B. Mundet, N. Chamorro, F. Valles, M. Coll, S. Ricart, B. Vallejo, Supercond. Sci. Technol. 31, 044001 (2018)CrossRefGoogle Scholar
  14. 14.
    D. Fa-Zhu, G. Hong-Wei, Z. Teng, W. Hong-Yan, Q. Fei, Q. Qing-Quan, D. Shao-Tao, P. Xing-Yu, Chin. Phys. B 22, 077401 (2013)CrossRefGoogle Scholar
  15. 15.
    S. Chen, M.A. Sebastian, B. Gautam, J. Wilt, T. Haugan, Z. Xing, J. Wu, IEEE Trans. Appl. Supercond. 27, 1–5 (2017)Google Scholar
  16. 16.
    H. Zhou, B. Maiorov, S.A. Baily, P.C. Dowden, J.A. Kennison, L. Stan, T.G. Holesinger, Q.X. Jia, S.R. Foltyn, L. Civale, Supercond. Sci. Technol. 22, 085013 (2009)CrossRefGoogle Scholar
  17. 17.
    K.V. Paulose, J. Koshy, A.D. Damodaran, Supercond. Sci. Technol. 4, 98–101 (1991)CrossRefGoogle Scholar
  18. 18.
    J.I. Langford, A.J.C. Wilson, J. Appl. Crystallogr. 11, 102–113 (1978)CrossRefGoogle Scholar
  19. 19.
    V.D. Mote, Y. Purushotham, B.N. Dole, J. Theor. Appl. Phys. 6, 1–9 (2012)CrossRefGoogle Scholar
  20. 20.
    S.A. Hassanzadeh-Tabrizi, M. Mazaheri, M. Aminzare, S.K. Sadrnezhaad, J. Alloys Compd. 491, 499–502 (2010)CrossRefGoogle Scholar
  21. 21.
    Y. Zhou, W. Yuan, Q. Huang, W. Huang, H. Cheng, H. Liu, Ceram. Int. 41, 10702–10709 (2015)CrossRefGoogle Scholar
  22. 22.
    L. Ciontea, G. Celentano, A. Augieri, T. Ristoiu, R. Suciu, M.S. Gabor, A. Rufoloni, A. Vannozzi, V. Galluzzi, T. Petrisor, J. Phys.: Conf. Ser. 97, 012289 (2008)Google Scholar
  23. 23.
    Y.Y. Luo, Y.C. Wu, X.M. Xiong, Q.Y. Li, W. Gawalek, Z.H. He, J. Supercond. Novel Magn. 13, 575–581 (2000)CrossRefGoogle Scholar
  24. 24.
    J. Feng, L. Zhou, Y. Lu, P. Zhang, X. Xu, S. Chen, C. Zhang, X. Xiong, G. Liu, J. Alloys Compd. 458, 432–435 (2008)CrossRefGoogle Scholar
  25. 25.
    I. Hamadneh, A.M. Rosli, R. Abd-Shukor, N.R.M. Suib, S.Y. Yahya, J. Phys.: Conf. Ser. 97, 012063 (2008)Google Scholar
  26. 26.
    J.M. Tranquada, S.M. Heald, A.R. Moodenbaugh, Y. Xu, Phys. Rev. B 38, 8893–8899 (1988)CrossRefGoogle Scholar
  27. 27.
    E. Brecht, W.W. Schmahl, G. Miehe, M. Rodewald, H. Fuess, N.H. Andersen, J. Hanβmann, T. Wolf, Physica C 265, 53–66 (1996)CrossRefGoogle Scholar
  28. 28.
    A. Mellekh, M. Zouaoui, F. Ben Azzouz, M. Annabi, M. Ben Salem, Solid State Commun. 140, 318–323 (2006)CrossRefGoogle Scholar
  29. 29.
    S. Gupta, R.S. Yadav, N.P. Lalla, G.D. Verma, B. Das, Integr. Ferroelectr. 116, 68–81 (2010)CrossRefGoogle Scholar
  30. 30.
    M. Nikolo, Am. J. Phys. 63, 57–65 (1995)CrossRefGoogle Scholar
  31. 31.
    I.G. Deac, E. Burzo, A.V. Pop, V. Pop, R. Tetean, D. Kovacs, G. Borodi, Int. J. Mod. Phys. B 13, 1645–1654 (1999)CrossRefGoogle Scholar
  32. 32.
    C. Sbarciog, R.T. Redac, I.G. Deac, I. Pop, Mod. Phys. Lett. B 20, 1191–1198 (2006)CrossRefGoogle Scholar
  33. 33.
    P. Rani, R. Jha, V.P.S. Awana, J. Supercond. Novel Magn. 26, 2347–2352 (2013)CrossRefGoogle Scholar
  34. 34.
    V. Ambegaokar, A. Baratoff, Phys. Rev. Lett. 10, 486–489 (1963)CrossRefGoogle Scholar
  35. 35.
    J.R. Clem, Physica C 153–155, 50–55 (1988)CrossRefGoogle Scholar
  36. 36.
    C.P. Bean, Phys. Rev. Lett. 8, 250–253 (1962)CrossRefGoogle Scholar
  37. 37.
    I. Karaca, S. Celebi, A. Varilci, A.I. Malik, Supercond. Sci. Technol. 16, 100–104 (2003)CrossRefGoogle Scholar
  38. 38.
    P. Kameli, H. Salamati, M. Eslami, Solid State Commun. 137, 30–35 (2006)CrossRefGoogle Scholar
  39. 39.
    I. Nedkov, A. Veneva, J. Low Temp. Phys. 107, 497–502 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversiti Putra MalaysiaUPM SerdangMalaysia
  2. 2.Institute of Advanced Technology (ITMA)Universiti Putra MalaysiaUPM SerdangMalaysia
  3. 3.Department of Chemistry, Faculty of ScienceUniversiti Putra MalaysiaUPM SerdangMalaysia

Personalised recommendations