Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18674–18683 | Cite as

Fluorine and oxygen co-doped porous carbons derived from third-class red dates for high-performance symmetrical supercapacitors

  • Chang PengEmail author
  • Tianqin Zeng
  • Yong Yu
  • Zefan Li
  • Zeyuan Kuai
  • Wenkui ZhaoEmail author


Recently, the incorporation of foreign atoms (e.g. nitrogen, phosphorus, fluorine, and oxygen, etc.) into the carbocycle has been demonstrated to be very promising for enhancing the electrochemical property of carbon-based supercapacitor. Herein, for the first time, fluorine and oxygen co-doped porous carbons (FOPCs) were successfully prepared by employing third-class red dates as precursor, which showed high specific surface area (1229 m2 g−1), highly-developed micropores (~ 93%), rich oxygen-content (22.8 wt%) and moderate fluorine doping (1.0 wt%). Owing to the aforementioned advantages, the resultant FOPC-800 electrode displayed high specific capacities of 261 and 168 F g−1 at 1 and 20 A g−1 respectively, in 6 M KOH electrolyte. Moreover, high energy density (23.2 W h kg−1) of the FOPC-800-based symmetric supercapacitor was achieved in 1 M Na2SO4 electrolyte, with outstanding cyclic stability (93.5% retention after 5000 cycles).



This work was supported by the National Natural Science Foundation of China (21606081).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10854_2018_9990_MOESM1_ESM.docx (249 kb)
Supplementary material 1 (DOCX 248 KB)


  1. 1.
    P. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRefGoogle Scholar
  2. 2.
    M. Sevilla, R. Mokaya, Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 7, 1250–1280 (2014)CrossRefGoogle Scholar
  3. 3.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  4. 4.
    Y. Zhai, Y. Dou, D.Y. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828–4850 (2011)CrossRefGoogle Scholar
  5. 5.
    S. Dutta, A. Bhaumik, K.C.W. Wu, Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ. Sci. 7, 3574–3592 (2014)CrossRefGoogle Scholar
  6. 6.
    X.Y. Yang, L.H. Chen, Y. Li, J.C. Rooke, C. Sanchez, S.L. Su, Hierarchically porous materials: synthesis strategies and structure design. Chem. Soc. Rev. 46, 481–558 (2017)CrossRefGoogle Scholar
  7. 7.
    L. Hao, X.L. Li, L.J. Zhi, Carbonaceous electrode materials for supercapacitors. Adv. Mater. 25, 3899–3904 (2013)CrossRefGoogle Scholar
  8. 8.
    F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014)CrossRefGoogle Scholar
  9. 9.
    H. Jiang, P.S. Lee, C.Z. Li, 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 6, 41–53 (2013)CrossRefGoogle Scholar
  10. 10.
    W.W. Kang, B.P. Lin, G.X. Huang, C.X. Zhang, W.T. Hou, Y.H. Yao, B. Xu, B.L. Xing, Nitrogen and oxygen co-doped porous carbon for high performance supercapacitors. J. Mater. Sci.: Mater. Electron. 29, 3340–3347 (2018)Google Scholar
  11. 11.
    B. Li, F. Dai, Q.F. Xiao, L. Yang, J.M. Shen, C.M. Zhang, M. Cai, Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 9, 102–106 (2016)CrossRefGoogle Scholar
  12. 12.
    L.L. Jiang, L.Z. Sheng, X. Chen, T. Wei, Z.J. Fan, Construction of nitrogen-doped porous carbon buildings using interconnected ultra-small carbon nanosheets for ultra-high rate supercapacitors. J. Mater. Chem. A 4, 11388–11396 (2016)CrossRefGoogle Scholar
  13. 13.
    Z.S. Li, Q.J. Liang, C.X. Yang, L. Zhang, B.L. Li, D.H. Li, Convenient preparation of nitrogen-doped activated carbon from Macadamia nutshell and its application in supercapacitor. J. Mater. Sci.: Mater. Electron. 28, 13880–13887 (2017)Google Scholar
  14. 14.
    H.M. Wei, H.J. Chen, N. Fu, J. Chen, G.X. Lan, W. Qian, Y.P. Liu, H.L. Lin, S. Han, Excellent electrochemical properties and large CO2 capture of nitrogen-doped activated porous carbon synthesised from waste longan shells. Electrochim. Acta 231, 403–411 (2017)CrossRefGoogle Scholar
  15. 15.
    L.J. Xie, G.H. Sun, F.Y. Su, X.Q. Guo, Q.Q. Kong, X.M. Li, X.H. Huang, L. Wan, W. Song, K.X. Li, C.X. Lv, C.M. Chen, Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J. Mater. Chem. A 4, 1637–1646 (2016)CrossRefGoogle Scholar
  16. 16.
    P. Song, X.P. Shen, W.F. He, L.R. Kong, X.M. He, Z.Y. Ji, A.H. Yuan, G.X. Zhu, N. Li, Protein-derived nitrogen-doped hierarchically porous carbon as electrode material for supercapacitors. J. Mater. Sci.: Mater. Electron. 29, 12206–12215 (2018)Google Scholar
  17. 17.
    L. Yuan, C.J. Feng, C.Y. Wang, Z.B. Fu, X. Yang, Y.J. Tang, Facile fabrication of activated carbonized horseweed-based biomaterials and their application in supercapacitors. J. Mater. Sci. 51, 3880–3887 (2016)CrossRefGoogle Scholar
  18. 18.
    F. Gao, J.Y. Qu, C. Geng, G.H. Shao, M.B. Wu, Self-templating synthesis of nitrogen-decorated hierarchical porous carbon from shrimp shell for supercapacitors. J. Mater. Chem. A 4, 7445–7452 (2016)CrossRefGoogle Scholar
  19. 19.
    L. Sun, C.G. Tian, M.T. Li, X.Y. Meng, L. Wang, H.G. Fu, From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J. Mater. Chem. A 1, 6462–6470 (2013)CrossRefGoogle Scholar
  20. 20.
    L. Zhou, H. Cao, S.Q. Zhu, L.R. Hou, C.Z. Yuan, Hierarchical micro-/mesoporous N- and O-enriched carbon derived from disposable cashmere: a competitive cost-effective material for high-performance electrochemical capacitors. Green Chem. 17, 2373–2382 (2015)CrossRefGoogle Scholar
  21. 21.
    W.W. Kang, B.P. Lin, G.X. Huang, C.X. Zhang, Y.H. Yao, W.T. Hou, B. Xu, B.L. Xing, Peanut bran derived hierarchical porous carbon for supercapacitor. J. Mater. Sci.: Mater. Electron. 29, 6361–6368 (2018)Google Scholar
  22. 22.
    Z. Li, Z.W. Xu, X.H. Tan, H.L. Wang, C.M.B. Holt, T. Stephenson, B.C. Olsenab, D. Mitlin, Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci. 6, 871–878 (2013)CrossRefGoogle Scholar
  23. 23.
    J.H. Hou, C.B. Cao, F. Idrees, X.L. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 3, 2556–2564 (2015)CrossRefGoogle Scholar
  24. 24.
    Y. Li, Z. Li, P.K. Shen, Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv. Mater. 25, 2474–2480 (2013)CrossRefGoogle Scholar
  25. 25.
    Q. Shi, R. Zhang, Y. Lv, Y. Deng, A.A. Elzatahrya, D. Zhao, Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor. Carbon 84, 335–346 (2015)CrossRefGoogle Scholar
  26. 26.
    C. Zhong, Y.D. Deng, W.B. Hu, J.L. Qiao, L. Zhang, J.J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015)CrossRefGoogle Scholar
  27. 27.
    Q. Wang, J. Yan, T. Wei, J. Feng, Y.M. Ren, Z.J. Fan, M.L. Zhang, X.Y. Jing, Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors. Carbon 60, 481–487 (2013)CrossRefGoogle Scholar
  28. 28.
    Y.G. Wang, Y.F. Song, Y.Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016)CrossRefGoogle Scholar
  29. 29.
    F.G. Zhao, G. Zhao, X.H. Liu, C.W. Ge, J.T. Wang, B.L. Li, Q.G. Wang, W.S. Li, Q.Y. Chen, Fluorinated graphene: facile solution preparation and tailorable properties by fluorine-content tuning. J. Mater. Chem. A 2, 8782–8789 (2014)CrossRefGoogle Scholar
  30. 30.
    P.Z. Wang, B. Qiao, Y.C. Du, Y.F. Li, X.S. Zhou, Z.H. Dai, J.C. Bao, Fluorine-doped carbon particles derived from lotus petioles as high-performance anode materials for sodium-ion batteries. J. Phys. Chem. C 119, 21336–21344 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Roldán, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew. Chem. Int. Ed. 50, 1699–1701 (2011)CrossRefGoogle Scholar
  32. 32.
    G. Pognon, T. Brousse, D. Bélanger, Effect of molecular grafting on the pore size distribution and the double layer capacitance of activated carbon for electrochemical double layer capacitors. Carbon 49, 1340–1348 (2011)CrossRefGoogle Scholar
  33. 33.
    J.S. Zhou, J. Lian, L. Hou, J.C. Zhang, H.Y. Gou, M.R. Xia, Y.F. Zhao, T.A. Strobel, L. Tao, F.M. Gao, Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat. Commun. 6, 8503 (2015)CrossRefGoogle Scholar
  34. 34.
    C.L. Long, X. Chen, L.L. Jiang, L.J. Zhi, Z.J. Fan, Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy 12, 141–151 (2015)CrossRefGoogle Scholar
  35. 35.
    Z.Y. Lin, Y. Liu, Y.G. Yao, O.J. Hildreth, Z. Li, K. Moon, C.P. Wong, Superior capacitance of functionalized graphene. J. Phys. Chem. C 115, 7120–7125 (2011)CrossRefGoogle Scholar
  36. 36.
    G. Zhang, L. Wang, Y. Hao, X. Jin, Y. Xu, Y. Kuang, L. Dai, X. Sun, Unconventional carbon: alkaline dehalogenation of polymers yields N-doped carbon electrode for high-performance capacitive energy storage. Adv. Funct. Mater. 26, 3340–3348 (2016)CrossRefGoogle Scholar
  37. 37.
    L.L. Jiang, L. Sheng, C.L. Long, T. Wei, Z.J. Fan, Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Adv. Energy Mater. 5, 1500771 (2015)CrossRefGoogle Scholar
  38. 38.
    J.N. Yi, Y. Qing, C.T. Wu, Y.X. Zeng, Y.Q. Wu, X.H. Lu, Y.X. Tong, Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors. J. Power Sources 35, 1130–1137 (2017)Google Scholar
  39. 39.
    Q.H. Liang, L. Ye, Z.H. Huang, Q. Xu, Y. Bai, F.Y. Kang, Q.H. Yang, A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale 6, 13831–13837 (2014)CrossRefGoogle Scholar
  40. 40.
    L.B. Deng, W.H. Zhong, J.B. Wang, P.X. Zhang, Y.L. Li, The enhancement of electrochemical capacitance of biomass-carbon by pyrolysis of extracted nanofibers. Electrochim. Acta 228, 398–406 (2017)CrossRefGoogle Scholar
  41. 41.
    Y.F. An, Y.Y. Yang, Z.A. Hu, B.S. Guo, X.T. Wang, H.Y. Wu, High-performance symmetric supercapacitors based on carbon nanosheets framework with graphene hydrogel architecture derived from cellulose acetate. J. Power Sources 337, 45–53 (2017)CrossRefGoogle Scholar
  42. 42.
    S.Y. Gao, X.G. Li, L.Y. Li, X.J. Wei, A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation. Nano Energy 33, 334–342 (2017)CrossRefGoogle Scholar
  43. 43.
    B. Liu, Y.J. Liu, H.B. Chen, M. Yang, H.M. Li, Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J. Power Sources 341, 309–317 (2017)CrossRefGoogle Scholar
  44. 44.
    B. You, F. Kang, P.Q. Yin, Q. Zhang, Hydrogel-derived heteroatom-doped porous carbon networks for supercapacitor and electro-catalytic oxygen reduction. Carbon 103, 9–15 (2016)CrossRefGoogle Scholar
  45. 45.
    M.L. He, K. Fic, E. Frackowiak, P. Novak, E.J. Berg, Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis. Energy Environ. Sci. 9, 623–633 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceHunan Agricultural UniversityChangshaPeople’s Republic of China

Personalised recommendations