Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18020–18029 | Cite as

Microwave-hydrothermal synthesis of Y3Fe3.35Al1.65O12 nanoparticles for magneto-hyperthermia application

  • E. BorsariEmail author
  • B. G. G. Freire
  • F. G. Garcia
  • M. S. Silva
  • C. C. Silva
  • A. Z. SimõesEmail author


Crystalline aluminum substituted yttrium iron garnet nanoparticles Y3Fe3.35Al1.65O12 (YIG) was synthesized by hydrothermal microwave synthesis at 140 °C with soaking times ranging from 15 to 60 min. X-ray diffraction confirmed the single-phase YIG nanoparticles excluding the presence of any other phases in the reaction products. The Raman spectra revealed that the largest soaking time provides greater energy crystallization causing changes of lattice vibration and a certain degree of disorder in the crystal lattice. Field emission gun-scanning electron microscopy and high resolution transmission electronic microscopic revealed a homogeneous size distribution of nanometric YIG powders with agglomerated particles. Magnetic measurements were achieved by using a vibrating-sample magnetometer unit. YIG nanoparticles have great potential in magneto-hyperthermia application once in vivo applications magnetic induction heating ferromagnetic compounds generate heat in AC magnetic fields.



The financial support of this research project by the Brazilian research funding agency FAPESP 2014/16993-1. The funding was supported by FAPESP (Grant No. 2013/07296-2).


  1. 1.
    P. Moroz, S.K. Jones, B.N. Gray, Magnetically mediated hyperthermia: current status and future directions. Int. J. Hyperth. 18, 267–284 (2002)CrossRefGoogle Scholar
  2. 2.
    J.J.W. Lagendijk, Hyperthermia treatment planning. Phys. Med. Biol. 45, R61–R76 (2000)CrossRefGoogle Scholar
  3. 3.
    A.R. Jordan, K. Scholz, M. Maier-Hauff, P. Johannsen, J. Wust, H. Nadobny, H. Schirra, S. Schmidt, S. Deger, W. Loening, R. Lanksch, Felix, Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater. 225, 118–126 (2001)CrossRefGoogle Scholar
  4. 4.
    K. Maier-Hauff, R. Rothe, B. Thiesen, A. Jordan, Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J. Neurooncol. 81, 53–60 (2007)CrossRefGoogle Scholar
  5. 5.
    K. Maier-Hauff, R. Rothe, B. Thiesen, A. Jordan, H. Orawa, A. Jordan, Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 103, 317–324 (2011)CrossRefGoogle Scholar
  6. 6.
    M. Johannsen, U. Gneveckow, B. Thiesen, N. Waldöfner, R. Scholz, S.A. Loening, P. Wust, Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur. Urol. 52, 1653–1662 (2007)CrossRefGoogle Scholar
  7. 7.
    R.K. Gil Christian, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrot, C.B. Taylor, Selective inductive heating of lymph nodes. Ann Surg. 146, 596–606 (1957)CrossRefGoogle Scholar
  8. 8.
    V.F. Castro, J. Celestino, A.A.A. Queiroz, F.G. Garcia, Propriedades magnéticas e biocompatíveis de nanocompósitos para utilização em magneto-hipertermia, Rev. Bras. Fís. Méd. 4, 79–82 (2010)Google Scholar
  9. 9.
    C.S.S.R. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789–808 (2011)CrossRefGoogle Scholar
  10. 10.
    Z.A. Motlagh, M. Mozaffari, J. Amighian, Preparation of nano-sized Al-substituted yttrium iron garnets by the mechanochemical method and investigation of their magnetic properties. J. Magn. Magn. Mater. 321, 1980–1984 (2009)CrossRefGoogle Scholar
  11. 11.
    F. Bertaut, O.F. Forrat, Structure des ferrites ferrimagnetiques des terres rares. Compt. Rend. 242, 382–385 (1956)Google Scholar
  12. 12.
    Y.F. Chen, K.T. Wu, Y.D. Yao, C.H. Peng, W.S. Tse, The influence of Fe concentration on Y3Fe5–xAlxO12 garnets. Microelectron. Eng. 81, 329–335 (2005)CrossRefGoogle Scholar
  13. 13.
    M. Othman, M.F. Ain, N.S. Abdullah, Z.A. Ahmad, Studies on the formation of yttrium iron garnet (YIG) through stoichiometry modification prepared by conventional solid-state method. J. Eur. Ceram. Soc. 33, 1317–1324 (2013)CrossRefGoogle Scholar
  14. 14.
    Z. Cheng, H. Yang, Synthesis and magnetic properties of Sm–Y3Fe5O12 nanoparticles. Physica E. 39, 198–202 (2007)CrossRefGoogle Scholar
  15. 15.
    Z.A. Motlagh, M. Mozaffari, J. Amighian, A.F. Lehlooh, M. Awawdeh, S. Mahmood, Mössbauer studies of Y3Fe5–xAlxO12 nanopowders prepared by mechanochemical method. Hyperfine Interact. 198, 295–302 (2010)CrossRefGoogle Scholar
  16. 16.
    M.N. Akhtar, M.A. Khan, S.F. Shaukat, M.H. Asif, N. Nasir, G. Abbas, Nazir, Y3Fe5O12 nanoparticulate garnet ferrites: comprehensive study on the synthesis and characterization fabricated by various routes. J. Magn. Magn. Mater. 368, 393–400 (2014)CrossRefGoogle Scholar
  17. 17.
    R. Hergt, S. Dutz, R. Muller, M. Zeisberger, Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter. 18, S2919–S2934 (2006)CrossRefGoogle Scholar
  18. 18.
    M.N. Akhtar, M.A. Khan, M.R. Raza, M. Ahmad, S.F. Shaukat, M.H. Asif, M. Saleem, M.S. Nazir, Structural, morphological, dielectric and magnetic characterizations of Ni0.6Cu0.2Zn0.2Fe2O4 (NCZF/MWCNTs/PVDF) nanocomposites for multilayer chip inductor (MLCI) applications. Ceram. Int. 40, 15821–15829 (2014)CrossRefGoogle Scholar
  19. 19.
    F. Grasset, S. Mornet, A. Demourgues, J. Portier, J. Bonnet, A. Vekris, E. Duguet, Synthesis, magnetic properties, surface modification and cytotoxicity evaluation ofY3Fe5–xAlxO12 (0 ≤ x ≤ 2) garnet submicron particles for biomedical applications. J. Magn. Magn. Mater. 234, 409–418 (2001)CrossRefGoogle Scholar
  20. 20.
    H. Yu, L. Zeng, C. Lu, W. Zhang, G. Xu, Synthesis of nanocrystalline yttrium iron garnet by low temperature solid state reaction. Mater. Charact. 62, 378–381 (2011)CrossRefGoogle Scholar
  21. 21.
    D.T.T. Nguyet, N.P. Duong, T. Satoh, L.N. Anh, T.D. Hien, Temperature-dependent magnetic properties of yttrium iron garnet nanoparticles prepared by citrate sol–gel. J. Alloy. Compd. 541, 18–22 (2012)CrossRefGoogle Scholar
  22. 22.
    Y.-P. Fu, C.-H. Lin, P. Ko-Ying, Microwave-induced combustion synthesis of yttrium iron garnet nano-powders and their characterizations. J. Magn. Magn. Mater. 272–276, 2202–2204 (2004)CrossRefGoogle Scholar
  23. 23.
    P. Grosseau, A. Bachiorrini, B. Guilhot, Preparation of polycrystalline yttrium iron garnet ceramics. J. Therm. Anal. 46, 1633–1641 (1996)CrossRefGoogle Scholar
  24. 24.
    P. Vaqueiro, M.A. Lopez-Quintela, J. Rivas, Synthesis of yttrium iron garnet nanoparticles via coprecipitation in microemulsion. J. Mater. Chem. 7, 501–505 (1997)CrossRefGoogle Scholar
  25. 25.
    S. Taketomi, Y. Ozaki, K. Kawasaki, S. Yuasa, A.H. Miyaiwa, Transparent magnetic fluid: preparation of YIG ultrafine particles. J. Magn. Magn. Mater. 122, 6–10 (1993)CrossRefGoogle Scholar
  26. 26.
    S. Komarneni, Q.H. Li, R. Roy, Microwave-hydrothermal processing for synthesis of layered and network phosphates. J. Mater. Chem. 4, 1903–1906 (1994)CrossRefGoogle Scholar
  27. 27.
    A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)CrossRefGoogle Scholar
  28. 28.
    Y. Cui, C.M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire buiding blocks. Science 291, 851–853 (2001)CrossRefGoogle Scholar
  29. 29.
    J.T. Hu, O.Y. Min, P.D. Yang, C.M. Lieber, Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399, 48–51 (1999)CrossRefGoogle Scholar
  30. 30.
    E.W. Dai, H.J. Wong, Y.Z. Lu, S.S. Fan, C.M. Lieber, Synthesis and characterization of carbide nanorods. Nature 375, 769–772 (1995)CrossRefGoogle Scholar
  31. 31.
    A. Sobhani-Nasaba, M. Rahimi-Nasrabadi, H. RezaNaderi, V. Pourmohamadian, F. Ahmadi, M.R. Ganjali, H. Ehrlich, Sonochemical synthesis of terbium tungstate for developing high power supercapacitors with enhanced energy densities. Ultrason. Sonochem. 45, 189–196 (2018)CrossRefGoogle Scholar
  32. 32.
    E.-A. Mohammad, A. Sobhani-Nasabb, M. Rahimi-Nasrabadic, F. Ahmadid, S. Pourmasoud, Ultrasound-assisted synthesis of YbVO4 nanostructure and YbVO4/CuWO4 nanocomposites for enhanced photocatalytic degradation of organic dyes under visible light. Ultrason. Sonochem. 43, 120–135 (2018)CrossRefGoogle Scholar
  33. 33.
    M. Rahimi-Nasrabadi, F. Ahmadi, Investigation of optical properties and the photocatalytic activity of synthesized YbYO4 nanoparticles and YbVO4/NiWO4 nanocomposites by polymeric capping agents. J. Mol. Struct. 1157, 607–615 (2018)CrossRefGoogle Scholar
  34. 34.
    M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, M. Hamadanian, S. Bagheri, Facile synthesis and characterization of CdTiO3 nanoparticles by Pechini sol-gel. J. Mater. Sci. Mater. Electron. 28, 14965–14973 (2017)CrossRefGoogle Scholar
  35. 35.
    D.V.M. Paiva, M.A.S. Silva, T.S. Ribeiro, I.F. Vasconcelos, A.S.B. Sombra, P.B.A. Fechine, Novel magnetic-dielectric composite ceramic obtained from Y3Fe5O12 and CaTiO3. J. Alloy. Compd. 644, 763–769 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Engineering of GuaratinguetáSão Paulo State University - UNESPGuaratinguetáBrazil
  2. 2.Physics and Chemistry InstituteFederal University of Itajubá - UNIFEIItajubáBrazil

Personalised recommendations