Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18660–18667 | Cite as

Efficient humidity-sensitive electrical response of annealed lithium substituted nickel ferrite (Li–NiFe2O4) nanoparticles under ideal, real and corrosive environments

  • V. Manikandan
  • Iulian Petrila
  • S. Vigneselvan
  • Raghu Dharmavarapu
  • Saulius Juodkazis
  • S. Kavita
  • J. Chandrasekaran
Article
  • 49 Downloads

Abstract

The Li–NiFe2O4 nanoparticles have been prepared via simple cost effective chemical co-precipitation method. X-ray diffraction analysis affirms the cubic spinel structure and particle size is ~ 32 nm. SEM and TEM analysis were revealed the needle shape of nanoparticles with agglomeration. XPS and FT-IR spectrum confirmed composition and usual behaviour of spinel ferrites. Band gap energy of material is 3.62 eV that imply semiconducting nature. Humidity sensor analysis is carried out three different environments in order to test the influence of medium stress factors on sensors parameters. Under these environments, Li–NiFe2O4 nanoparticles exhibit well sensing nature. Besides, the material displays high sensitivity at ideal environments and good stability in real environments. The results also show interesting characteristics of the maturing and aging process of humidity sensors.

Notes

Acknowledgements

We thank De Ming Zhu for assistance with XPS analysis.

References

  1. 1.
    Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sens. Lett. 3, 274–295 (2005).  https://doi.org/10.1166/sl.2005.045 CrossRefGoogle Scholar
  2. 2.
    S. Sikarwar, B.C. Yadav, S. Singh, G.I. Dzhardimalieva, S.I. Pomogailo, N.D. Golubeva, A.D. Pomogailo, Fabrication of nanostructured yttria stabilized zirconia multilayered films and their optical humidity sensing capabilities based on transmission. Sens. Actuators B 232, 283–291 (2016).  https://doi.org/10.1016/j.snb.2016.03.080 CrossRefGoogle Scholar
  3. 3.
    T.A. Blank, L.P. Eksperiandova, K.N. Belikov, Recent trends of ceramic humidity sensors development: a review. Sens. Actuators B 228, 416–442 (2016).  https://doi.org/10.1016/j.snb.2016.01.015 CrossRefGoogle Scholar
  4. 4.
    P. Chaudhary, S. Sikarwar, B.C. Yadav, G.I. Dzhardimalieva, N.D. Golubeva, I.E. Uflyand, Synthesis and characterization of copper(II) nitrate polyacrylamide & its application as opto-electronic humidity sensor. Sens. Actuators A 263, 415–422 (2017).  https://doi.org/10.1016/j.sna.2017.07.006 CrossRefGoogle Scholar
  5. 5.
    I. Petrila, F. Tudorache, Humidity sensor applicative material based on copper-zinc-tungsten spinel ferrite. Mater. Lett. 108, 129–133 (2013)CrossRefGoogle Scholar
  6. 6.
    F. Tudorache, I. Petrila, T. Slatineanu, A.M. Dumitrescu, A.R. Iordan, M. Dobromir, M.N. Palamaru, Humidity sensor characteristics and electrical properties of Ni–Zn–Dy ferrite material prepared using different chelating-fuel agents. J. Mater. Sci. 27, 272–278 (2016).  https://doi.org/10.1007/s10854-015-3750-4 CrossRefGoogle Scholar
  7. 7.
    R. Srivastava, B.C. Yadav, Ferrite materials: introduction, synthesis techniques, and applications as sensors. Int. J. Green Nanotechnol. Biomed. 4, 141–154 (2012).  https://doi.org/10.1080/19430892.2012.676918 CrossRefGoogle Scholar
  8. 8.
    V. Jeseentharani, M. George, B. Jeyaraj, A. Dayalan, K.S. Nagaraja, Synthesis of metal ferrite (MFe2O4, M = Co, Cu, Mg, Ni, Zn) nanoparticles as humidity sensor materials. J. Exp. Nanosci. 8, 358–370 (2013).  https://doi.org/10.1080/17458080.2012.690893 CrossRefGoogle Scholar
  9. 9.
    E.R. Kumar, R. Jayaprakash, G.S. Devi, P.S.P. Reddy, Synthesis of Mn substituted CuFe2O4 nanoparticles for liquefied petroleum gas sensor applications. Sens. Actuators B 191, 186–191 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Shah, M. Arora, L.P. Purohit, R.K. Kotnala, Significant increase in humidity sensing characteristics of praseodymium doped magnesium ferrite. Sens. Actuators A 167, 332–337 (2011).  https://doi.org/10.1016/j.sna.2011.03.010 CrossRefGoogle Scholar
  11. 11.
    F. Tudorache, P.D. Popa, M. Dobromir, F. Iacomi, Studies on the structure and gas sensing properties of nickel–cobalt ferrite thin films prepared by spin coating. Mater. Sci. Eng. 178, 1334–1338 (2013)CrossRefGoogle Scholar
  12. 12.
    C. Virlan, F. Tudorache, A. Pui, Tertiary NiCuZn ferrites for improved humidity sensors: a systematic study. Arab. J. Chem. (2018).  https://doi.org/10.1016/j.arabjc.2018.03.005 CrossRefGoogle Scholar
  13. 13.
    B.C. Yadav, K.S. Chauhan, S. Singh, R.K. Sonker, S. Sikarwar, R. Kumar, Growth and characterization of sol–gel processed rectangular shaped nanostructured ferric oxide thin film followed by humidity and gas sensing. J. Mater. Sci. 28, 5270–5280 (2017).  https://doi.org/10.1007/s10854-016-6184-8 CrossRefGoogle Scholar
  14. 14.
    R. Srivastava, B.C. Yadav, M. Singh, T.P. Yadav, Synthesis, characterization of nickel ferrite and its uses as humidity and LPG sensors. J. Inorg. Organomet. Polym Mater. (2016).  https://doi.org/10.1007/s10904-016-0425-4 CrossRefGoogle Scholar
  15. 15.
    I. Petrila, K. Popa, F. Tudorache, Microstructure, electrical and humidity sensing properties of light rare earths zirconates. Sens. Actuators A 247, 156–161 (2016).  https://doi.org/10.1016/j.sna.2016.05.039 CrossRefGoogle Scholar
  16. 16.
    A.M. Dumitrescu, G. Lisa, A.R. Iordan, F. Tudorache, I. Petrila, A.I. Borhan, M.N. Palamaru, C. Mihailescu, L. Leontie, C. Munteanu, Ni ferrite highly organized as humidity sensors. Mater. Chem. Phys. 156, 170–179 (2015).  https://doi.org/10.1016/j.matchemphys.2015.02.044 CrossRefGoogle Scholar
  17. 17.
    V. Manikandan, A. Vanitha, E.R. Kumar, S. Kavita, Influence of sintering temperature on structural, dielectric and magnetic properties of Li substituted CuFe2O4 nanoparticles. J. Magn. Magn. Mater. (2016).  https://doi.org/10.1016/j.jmmm.2016.11.034 CrossRefGoogle Scholar
  18. 18.
    E.R. Kumar, C. Srinivas, M.S. Seehra, M. Deepty, I. Pradeep, A.S. Kamzin, M.V.K. Mehar, N.K. Mohan, Particle size dependence of the magnetic, dielectric and gas sensing properties of Co substituted NiFe2O4 nanoparticles. Sens. Actuators A 279, 10–16 (2018)CrossRefGoogle Scholar
  19. 19.
    Y. Köseoğlu, İ Aldemir, F. Bayansal, S. Kahraman, H.A. Çetinkara, Synthesis, characterization and humidity sensing properties of Mn0.2Ni0.8Fe2O4 nanoparticles. Mater. Chem. Phys. 139, 789–793 (2013).  https://doi.org/10.1016/j.matchemphys.2013.02.033 CrossRefGoogle Scholar
  20. 20.
    V. Manikandan, A. Vanitha, E.R. Kumar, S. Kavita, Influence of sintering temperature on structural, dielectric and magnetic properties of Li substituted CuFe2O4 nanoparticles. J. Magn. Magn. Mater. 426, 11–17 (2017).  https://doi.org/10.1016/j.jmmm.2016.11.034 CrossRefGoogle Scholar
  21. 21.
    S. Sikarwar, B.C. Yadav, Opto-electronic humidity sensor: a review. Sensors Actuators A Phys. 233, 54–70 (2015).  https://doi.org/10.1016/j.sna.2015.05.007 CrossRefGoogle Scholar
  22. 22.
    Y.J. Kwon, A. Mirzaei, S.Y. Kang, M.S. Choi, J.H. Bang, S.S. Kim, H.W. Kim, Synthesis, characterization and gas sensing properties of ZnO-decorated MWCNTs. Appl. Surf. Sci. 413, 242–252 (2017).  https://doi.org/10.1016/j.apsusc.2017.03.290 CrossRefGoogle Scholar
  23. 23.
    A. Mirzaei, K. Janghorban, B. Hashemi, M. Bonyani, S.G. Leonardi, G. Neri, Highly stable and selective ethanol sensor based on α-Fe2O3 nanoparticles prepared by Pechini sol–gel method. Ceram. Int. 42, 6136–6144 (2016).  https://doi.org/10.1016/j.ceramint.2015.12.176 CrossRefGoogle Scholar
  24. 24.
    Y. Wang, F. Qu, J. Liu, Y. Wang, J. Zhou, S. Ruan, Enhanced H2S sensing characteristics of CuO-NiO core-shell microspheres sensors. Sens. Actuators B 209, 515–523 (2015).  https://doi.org/10.1016/j.snb.2014.12.010 CrossRefGoogle Scholar
  25. 25.
    Y.-C. Lu, E.J. Crumlin, G.M. Veith, J.R. Harding, E. Mutoro, L. Baggetto, N.J. Dudney, Z. Liu, Y. Shao-Horn, In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions. Sci. Rep. 2, 715 (2012).  https://doi.org/10.1038/srep00715 CrossRefGoogle Scholar
  26. 26.
    G. Kaur, A. Mitra, K.L. Yadav, Pulsed laser deposited Al-doped ZnO thin films for optical applications, Prog. Nat. Sci. Mater. Int. 25, 12–21 (2015).  https://doi.org/10.1016/j.pnsc.2015.01.012 CrossRefGoogle Scholar
  27. 27.
    V. Manikandan, A. Vanitha, E.R. Kumar, J. Chandrasekaran, Effect of sintering temperature on structural and dielectric properties of Sn substituted CuFe2O4 Nanoparticles, J. Magn. Magn. Mater. (2017).  https://doi.org/10.1016/j.jmmm.2016.09.077 CrossRefGoogle Scholar
  28. 28.
    J. Liu, T. Xu, M. Gong, F. Yu, Y. Fu, Z. Chen, E. Shi, W. Li, Y. Zheng, W. Zhong, Hydrothermal synthesis and optical property of nano-sized CoAl2O4 pigment, 55, 281–284 (2002).  https://doi.org/10.1016/j.memsci.2006.06.027 CrossRefGoogle Scholar
  29. 29.
    W.S. Sheldrick, M. Wachhold, M. Rozman, M. Drofenik, Hydrothermal synthesis of manganese zinc ferrites. J. Am. Ceram. Soc. 36, 2449–2455 (1997).  https://doi.org/10.1002/anie.199702061 CrossRefGoogle Scholar
  30. 30.
    J. Liu, T. Xu, M. Gong, F. Yu, Y. Fu, Fundamental studies of novel inorganic-organic charged zwitterionic hybrids. 4. New hybrid zwitterionic membranes prepared from polyethylene glycol (PEG) and silane coupling agent. J. Membr. Sci. 283, 190–200 (2006).  https://doi.org/10.1016/j.memsci.2006.06.027 CrossRefGoogle Scholar
  31. 31.
    W.S. Sheldrick, M. Wachhold, Solventothermal synthesis of solid-state chalcogenidometalates. Angew. Chem. Int. Ed. Engl. 36, 206–224 (1997).  https://doi.org/10.1002/anie.199702061 CrossRefGoogle Scholar
  32. 32.
    R. Malik, V.K. Tomer, V. Chaudhary, M.S. Dahiya, A. Sharma, S.P. Nehra, S. Duhan, K. Kailasam, An excellent humidity sensor based on In–SnO2 loaded mesoporous graphitic carbon nitride. J. Mater. Chem. A 5, 14134–14143 (2017).  https://doi.org/10.1039/C7TA02860A CrossRefGoogle Scholar
  33. 33.
    V. Manikandan, S. Sikarwar, B.C. Yadav, R.S. Mane, Fabrication of Tin substituted Nickel Ferrite (Sn-NiFe2O4) thin film and its application as opto-electronic humidity sensor. Sens. Actuators A (2018).  https://doi.org/10.1016/j.sna.2018.01.059 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsKongunadu Arts and Science CollegeCoimbatoreIndia
  2. 2.Faculty of Automatic Control and Computer EngineeringGheorghe Asachi Technical University of IasiIasiRomania
  3. 3.Department of PhysicsGovernment College of TechnologyCoimbatoreIndia
  4. 4.Center of Micro-PhotonicsSwinburne University of TechnologyMelbourneAustralia
  5. 5.Centre for Automotive Energy MaterialsInternational Advanced Research Centre for Powder Metallurgy and New MaterialsChennaiIndia
  6. 6.Department of PhysicsSri Ramakrishna Mission Vidyalaya College of Arts & ScienceCoimbatoreIndia

Personalised recommendations