Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18640–18649 | Cite as

Structural investigation, dielectric, ferroelectric, and elecrocaloric properties of lead-free Ba(1−x)CaxTi(1−x)(Li1/3Nb2/3)xO3−δ (x = 0.02 and x = 0.07) ceramics

  • F. Lawar
  • J. Belhadi
  • B. Asbani
  • B. Manoun
  • H. Kaddoussi
  • M. Courty
  • C. Boudaya
  • M. El Marssi
  • H. Khemakhem
  • A. Lahmar
Article
  • 59 Downloads

Abstract

The ferroelectric lead-free Ba(1−x)CaxTi(1−x)(Li1/3Nb2/3)xO3−δ with x = 0.02 and x = 0.07 (BCLNTO2 and BCLNTO7) ceramics were elaborated by a conventional sintering process. The effects of Ca and (Li, Nb) contents in the BTO matrix on the structure, dielectric, ferroelectric and electrocaloric properties were investigated. The refinement of the structure at room temperature showed that both BCLNTO2 and BCLNTO7 ceramics crystallize in the tetragonal system. Ferroelectric and dielectric investigations revealed the presence of three phase transitions similar to the parent phase BTO. Applying the Maxwell relation, the electrocaloric temperature changes were calculated using P–E hysteresis loops adjusted at different temperatures. The electrocaloric responsivity was found ξmax (ΔT/ΔE) = 0.14 K mm/kV at TECmax = 374 and ξmax = 0.12 K mm/kV at TECmax= 302 K for BCLNTO2 and BCLNTO7, respectively.

Notes

Acknowledgements

One of the authors (F.L) thanks Pr. Elouadi from La Rochelle University- France, for hospitality and valuable discussions.

References

  1. 1.
    M. Valant, Prog. Mater. Sci. 57, 980–1009 (2012)CrossRefGoogle Scholar
  2. 2.
    U. A.Kitanovski, U. Plaznik, A. Tomc, Poredoš, Int. J. Refrig. 57, 288–298 (2015)CrossRefGoogle Scholar
  3. 3.
    C. Aprea, A. Greco, A. Maiorino, C. Masselli, Int. J. Heat Technol. 35, 225–234 (2017)CrossRefGoogle Scholar
  4. 4.
    M.E. Lines, A.M. Glass, Clarendon Press, Oxford, (1977)Google Scholar
  5. 5.
    G. Singh, V.S. Tiwari, J. Alloys Compd. 523, 30–35 (2012)CrossRefGoogle Scholar
  6. 6.
    G. Ramesh, M. S. R. Rao, V. Sivasubramanian, V. Subramanian, J. Alloys Compd. 663, 444–448 (2016)CrossRefGoogle Scholar
  7. 7.
    M. C.Molina, V.V. Sanlialp, D.C. Shvartsmanb, P. Lupascub, A. Neumeistera, S. Schöneckera, Gebhardta, J. Eur. Ceram. Soc. 35, 2065–2071 (2015)CrossRefGoogle Scholar
  8. 8.
    C.L. Wang, C. Arago, M.I. Marqués, J. Adv. Dielec. 2(2), 1241007 (2012)CrossRefGoogle Scholar
  9. 9.
    B. Asbani, J.L. Dellis, A. Lahmar, M. Courty, M. Amjoud, Y. Gagou, K. Djellab, D. Mezzane, Z. Kutnjak, M.El Marssi, Appl. Phys. Lett. 106, 042902 (2015)CrossRefGoogle Scholar
  10. 10.
    H. Kaddoussi, Y. Gagou, Solid State Commun. 201, 64–67 (2015)CrossRefGoogle Scholar
  11. 11.
    H. Kaddoussi, A. Lahmar, Y. Gagou, B. Asbani, J.L. Dellis, G. Cordoyiannis, B. Allouche, H. Khemakhem, Z. Kutnjak, M. El Marssi, J. Alloys Compd. 667, 198–203(2016)CrossRefGoogle Scholar
  12. 12.
    D.J. Boultif, Louër, J. Appl. Cryst. 24, 987–993 (1991)CrossRefGoogle Scholar
  13. 13.
    J. Rodriguez- Carvajal, Program Fullprof, Lab Léon Brillouin, CEA-CNRS, version Avril 2008, LLB-LCSIM (2008)Google Scholar
  14. 14.
    T. Roisnel, T. Rodriguez-Carvajal, J. Mater. Sci. Forum. 378, 118–123 (2001)CrossRefGoogle Scholar
  15. 15.
    R.D. Shannon, Acta Cryst. A32, 751–767 (1976)CrossRefGoogle Scholar
  16. 16.
    M.J. Pan, C.A. Randall, IEEE Electr. Ins. Mag. 26, 44–50 (2010)CrossRefGoogle Scholar
  17. 17.
    Y. Luspin, J. L. Servoin, F. Gervais, J. Phys. Lett. 43, 537–542 (1982)CrossRefGoogle Scholar
  18. 18.
    M. Nagasawa, H. Kawaji, T. Tojo, T. Atake, Phys. Rev. B 74, 132101 (2006)CrossRefGoogle Scholar
  19. 19.
    H. Kaddoussi, A. Lahmar, Y. Gagou, J.L. Dellis, H. Khemakhem, M. El Marssi, Ceram. Int. 41, 15103–15110 (2015)CrossRefGoogle Scholar
  20. 20.
    D.A. Tenne, A. Soukiassian, X. Choosuwan, R. Guo, A.S. Bhalla, Phys. Rev. B 70, 1743021–1743029 (2004)CrossRefGoogle Scholar
  21. 21.
    P.S. Dobal, A. Dixit, R.S. Katiyar, D. Garcia, R. Guo, A.S. Bhalla, J. Raman Spectrosc. 32, 147–149 (2001)CrossRefGoogle Scholar
  22. 22.
    J. Suchanicz, K. Swierczek, J. Eur. Ceram. Soc. 35, 1777–1783 (2015)CrossRefGoogle Scholar
  23. 23.
    X. D.Lu, M.Toda Sun, J. Phys. Chem. Solids 68, 650–664 (2007)CrossRefGoogle Scholar
  24. 24.
    R. Selvamani, G. Singh, V. Sathe, V.S. Tiwari, P.K. Gupta, J. Phys. 23, 055901 (2011)Google Scholar
  25. 25.
    V. Buscaglia, M.T. Buscaglia, M. Viviani, J. Eur. Ceram. Soc. 25, 3059–3062 (2005)CrossRefGoogle Scholar
  26. 26.
    S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Science 311, 1270 (2006)CrossRefGoogle Scholar
  27. 27.
    L. Luo, X. Jiang, Y. Zhang, K. Li, J. Eur. Ceram. Soc. 37, 2803–2812 (2017)CrossRefGoogle Scholar
  28. 28.
    Q. Lia, J. Wanga, L. Maa, H. Fana, Z. Li, Mater. Res. Bull. 74, 57–61 (2016)CrossRefGoogle Scholar
  29. 29.
    X. Moya, E. Stern-Taulats, S. Crossley, D. Gonzalez-Alonso, S. Kar-Narayan, A. Planes, L. Manosa, N.D. Mathur, Adv. Mater. 25, 1360–1365 (2013)CrossRefGoogle Scholar
  30. 30.
    X. Zhang, L. Wu, S. Gao, J.Q. Liu, B. Xu, Y.D. Xia, J. Yin, Z.G. Liu, AIP Adv. 5, 047134 (2015)CrossRefGoogle Scholar
  31. 31.
    I. I.Djemel, N. Kriaa, H. Abdelmoula, Khemakhem, J. Alloys Compd. 720, 284–288 (2017)CrossRefGoogle Scholar
  32. 32.
    Y. Bai, X. Han, L.-J. Qiao, RSC Adv. 5, 71873–71877 (2015)CrossRefGoogle Scholar
  33. 33.
    G. Singh, V.S. Tiwari, P.K. Gupta, Appl. Phys. Lett. 103, 202903 (2013)CrossRefGoogle Scholar
  34. 34.
    Z. Abdelkafi, N. Abdelmoula, H. Khemakhem, A. Simon, M. Maglione, Ferroelectrics. 371, 48–55 (2010)CrossRefGoogle Scholar
  35. 35.
    N. Bensemma, K. Taibi, J. Am. Ceram. Soc. 2, 132–137 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • F. Lawar
    • 1
  • J. Belhadi
    • 2
  • B. Asbani
    • 3
  • B. Manoun
    • 4
    • 5
  • H. Kaddoussi
    • 2
  • M. Courty
    • 6
  • C. Boudaya
    • 1
  • M. El Marssi
    • 2
  • H. Khemakhem
    • 1
  • A. Lahmar
    • 2
  1. 1.Laboratoire des Matériaux Multifonctionnels et Applications (LaMMA), LR16ES18, Université de Sfax, Faculté des Sciences de Sfax (FSS)SfaxTunisia
  2. 2.Laboratoire de Physique de la Matière Condensée (LPMC), Université de Picardie, Jules Verne, Pôle ScientifiqueAmiens Cedex 1France
  3. 3.Institut des Materiaux Jean RouxelNantesFrance
  4. 4.Univ Hassan 1er, Laboratoire des Sciences des Matériaux, des Milieux et de la Modélisation (LS3M)KhouribgaMorocco
  5. 5.Materials Science and Nano-EngineeringMohammed VI Polytechnic UniversityBen GuerirMorocco
  6. 6.Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR 7314 CNRS, Université de Picardie Jules VerneAmiens CedexFrance

Personalised recommendations