Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18634–18639 | Cite as

Fabrication and microwave dielectric properties of the x(Ca0.8Na0.1Sm0.1)TiO3–(1 − x)(Sm0.5Nd0.5)AlO3 ceramic system

  • Yu-nan Li
  • Shifeng Yuan
  • Shaobo An
  • Shuting Niu
  • Juan Jiang
  • Lin Gan
  • Tianjin Zhang
Article
  • 32 Downloads

Abstract

The x(Ca0.8Na0.1Sm0.1)TiO3–(1 − x)(Sm0.5Nd0.5)AlO3 (CNST–SNA, 0.60 ≤ x ≤ 0.75) ceramic materials were prepared by a conventional two-step solid-state reaction route. The effects of the sintering temperature and composition on the phases, microstructures, and microwave dielectric properties were investigated. The optimal sintering temperature of the CNST–SNA ceramics was found at 1475 °C. The optimal microwave dielectric properties were achieved at x = 0.69 with εr = 43.8, Q × f = 34303 GHz (at 5.968 GHz), and τf = − 1.64 ppm/°C.

Notes

Acknowledgements

This work was supported by the National Science Foundation of China (No. 11774083) and Special Technical Innovation Project of Hubei Province (No. 2018AAA006). The authors would like to thank Prof. Fang-Fang Xu and Mr Wei-Chao Bao at Shanghai Institute of Ceramic (Shanghai, China) for TEM analyses.

References

  1. 1.
    Z.R. Jia, K.J. Lin, G.L. Wu, H. Xing, H.J. Wu, Nano. 13, 1830005 (2018)CrossRefGoogle Scholar
  2. 2.
    G. Dou, M. Guo, Y.X. Li, J.N. Lin, J. Mater. Sci. Mater. Electron. 26, 9195–9199 (2015)CrossRefGoogle Scholar
  3. 3.
    G.L. Wu, Y.H. Cheng, Z.D. Wang, K.K. Wang, A.L. Feng, J. Mater. Sci. Mater. Electron. 28, 576–581 (2017)CrossRefGoogle Scholar
  4. 4.
    Y. Zhou, Y.M. Li, Y. Qiao, R. Feng, J. Alloy. Compd. 747, 55–59 (2018)CrossRefGoogle Scholar
  5. 5.
    G.L. Wu, J.L. Li, K.K. Wang, Y.Q. Wang, C. Pan, A.L. Feng, J. Mater. Sci. Mater. Electron. 28, 6544–6551 (2017)CrossRefGoogle Scholar
  6. 6.
    Y. Yang, H. Hao, L. Zhang, C. Chen, Z.P. Luo, Z. Liu, Z.H. .Yao, M.H. Cao, H.X. Liu, Ceram. Int. 44, 11109–11115 (2018)CrossRefGoogle Scholar
  7. 7.
    G.L. Wu, Y.Q. Wang, K.K. Wang, A.L. Feng, RSC Adv. 6, 102542–102548 (2016)CrossRefGoogle Scholar
  8. 8.
    G. Dou, M. Guo, Y.X. Li, J. Mater. Sci. Mater. Electron. 27, 359–364 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Yang, R.L. Fu, S. Agathopoulos, Y. Xu, J. Cai, Ceram. Int. 42, 18108–18115 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Guo, G. Dou, Y.X. Li, S.P. Gong, J. Mater. Sci. Mater. Electron. 26, 608–612 (2015)CrossRefGoogle Scholar
  11. 11.
    J.X. Bi, Y.J. Niu, H.T. Wu, Ceram. Int. 43, 7522–7530 (2017)CrossRefGoogle Scholar
  12. 12.
    F.F. Ning, L. Gan, S.F. Yuan, Z.M. Qi, J. Jiang, T.J. Zhang, J. Alloy. Compd. 729, 742–748 (2017)CrossRefGoogle Scholar
  13. 13.
    W.T. Xie, Q.X. Jiang, Q.L. Cao, H.Q. Zhou, L.C. Ren, X.F. Luo, Ceram. Int. 42, 16552–16556 (2016)CrossRefGoogle Scholar
  14. 14.
    C.L. Huang, Y.C. Chen, J. Eur. Ceram. Soc. 23, 167–173 (2003)CrossRefGoogle Scholar
  15. 15.
    P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, D.S. Cannell, J. Eur. Ceram. Soc. 21, 1723–1726 (2001)CrossRefGoogle Scholar
  16. 16.
    B. Jancar, D. Suvorov, M. Valant, G. Drazic, J. Eur. Ceram. Soc. 23, 1391–1400 (2003)CrossRefGoogle Scholar
  17. 17.
    B. Jancar, M. Valant, D. Suvorov, Chem. Mater. 16, 1075–1082 (2004)CrossRefGoogle Scholar
  18. 18.
    D. Suvorov, M. Valant, B. Jancar, S. Skapin, Acta Chim. Slov. 48, 87–99 (2001)Google Scholar
  19. 19.
    Q.X. Jiang, W.T. Xie, Q.L. Cao, H.X. Xu, H.Q. Zhou, J. Mater. Sci. Mater. Electron. 27, 9078–9082 (2016)CrossRefGoogle Scholar
  20. 20.
    F. Liang, M. Ni, W.Z. Lu, G.F. Han, J. Alloy. Compd. 568, 11–15 (2013)CrossRefGoogle Scholar
  21. 21.
    F. Liu, J.J. Qu, C.L. Yuan, G.H. Chen, P.P. Qin, X.P. Huang, J. Mater. Sci. Mater. Electron. 28, 3052–3059 (2017)CrossRefGoogle Scholar
  22. 22.
    L.X. Li, S. Li, T. Tian, X.S. Lyu, J. Ye, H. Sun, J. Mater. Sci. Mater. Electron. 27, 1286–1292 (2016)CrossRefGoogle Scholar
  23. 23.
    E.S. Kim, B.S. Chun, D.H. Kang, J. Eur. Ceram. Soc. 27, 3005–3010 (2007)CrossRefGoogle Scholar
  24. 24.
    J.J. Qu, C.L. Yuan, F. Liu, X.Y. Liu, G.H. Chen, P.P. Qin, J. Mater. Sci. Mater. Electron. 26, 4862–4869 (2015)CrossRefGoogle Scholar
  25. 25.
    S.S. Rajput, S. Keshri, V.R. Gupta, J. Alloy. Compd. 552, 219–226 (2013)CrossRefGoogle Scholar
  26. 26.
    G.L. Wu, Y.H. Cheng, Z.H. Yang, Z.R. Jia, H.J. Wu, L.J. Yang, H.L. Li, P.Z. Guo, H.L. Lv, Chem. Eng. J. 333, 519–528 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Material Science and EngineeringHubei UniversityWuhanChina

Personalised recommendations