Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18600–18613 | Cite as

Novel uranyl-curcumin-MOF photocatalysts with highly performance photocatalytic activity toward the degradation of phenol red from aqueous solution: effective synthesis route, design and a controllable systematic study

  • Farideh Miri Khandan
  • Daryoush AfzaliEmail author
  • Ghasem Sargazi
  • Mohammad Gordan


In this work, the uranyl-curcumin metal–organic framework (MOF) samples were synthesized using ultrasound, reflux, hydrothermal and ultrasound assisted reflux techniques. Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, and N2 adsorption/desorption isotherm were used to identify and investigate the properties of the samples. The results showed that the synthesized products by ultrasound methods shows excellent properties than the other methods and had a significant porosity of 2.74 nm with the surface area of 42.66 m2/g. In this method, the size of particles is in the range of 40–90 nm, and the samples had a spherical morphology by uniform distribution without any agglomeration. In the second part of this study, the 2k−1 factorial method was used to evaluate the effects of several parameters (pH, contact time, phenol red concentration and photocatalyst content) on the photocatalytic activity of the uranyl-MOF with curcumin ligands in the degradation of phenol red from aqueous samples. The results showed that in optimal conditions (pH 8.04, contact time: 11 min, phenol red concentration: 0.11 mg/L, and amount of MOF: 18.00 mg), more than 99% of the phenol red could be degraded.



The authors would like to acknowledge financial support for this work from the Graduate University of Advanced Technology, Kerman, Iran.


  1. 1.
    S. Kitagawa, Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415–5418 (2014)CrossRefGoogle Scholar
  2. 2.
    M. Rosenthal, A. Gabrielli, F. Moore, The evolution of nutritional support in long term ICU patients: from multisystem organ failure to persistent inflammation immunosuppression catabolism syndrome. Minerva Anestesiol. 82, 84–96 (2016)Google Scholar
  3. 3.
    S. Shahid, K. Nijmeijer, S. Nehache, I. Vankelecom, A. Deratani, D. Quemener, MOF-mixed matrix membranes: precise dispersion of MOF particles with better compatibility via a particle fusion approach for enhanced gas separation properties. J. Membr. Sci 492, 21–31 (2015)CrossRefGoogle Scholar
  4. 4.
    Q. Zhang, J.n.M. Shreeve, Metal–organic frameworks as high explosives: a new concept for energetic materials. Angew. Chem. Int. Ed. 53, 2540–2542 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Rubio-Martinez, C. Avci-Camur, A.W. Thornton, I. Imaz, D. Maspoch, M.R. Hill, New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 46, 3453–3480 (2017)CrossRefGoogle Scholar
  6. 6.
    D. Lv, Y. Chen, Y. Li, R. Shi, H. Wu, X. Sun, J. Xiao, H. Xi, Q. Xia, Z. Li, Efficient mechanochemical synthesis of MOF-5 for linear alkanes adsorption. J. Chem. Eng. Data 62, 2030–2036 (2017)CrossRefGoogle Scholar
  7. 7.
    T.P. Vaid, S.P. Kelley, R.D. Rogers, Structure-directing effects of ionic liquids in the ionothermal synthesis of metal–organic frameworks. IUCrJ 4, 380–392 (2017)CrossRefGoogle Scholar
  8. 8.
    F. Abbasloo, S.A. Khosravani, M. Ghaedi, K. Dashtian, E. Hosseini, L. Manzouri, S.S. Khorramrooz, A. Sharifi, R. Jannesar, F. Sadri, Sonochemical-solvothermal synthesis of guanine embedded copper based metal–organic framework (MOF) and its effect on oprD gene expression in clinical and standard strains of Pseudomonas aeruginosa. Ultrason. Sonochem. 42, 237–243 (2018)CrossRefGoogle Scholar
  9. 9.
    V. Butova, A. Budnyk, E. Bulanova, C. Lamberti, A. Soldatov, Hydrothermal synthesis of high surface area ZIF-8 with minimal use of TEA. Solid State Sci. 69, 13–21 (2017)CrossRefGoogle Scholar
  10. 10.
    G. Sargazi, D. Afzali, A. Mostafavi, A novel synthesis of a new thorium (IV) metal organic framework nanostructure with well controllable procedure through ultrasound assisted reverse micelle method. Ultrason. Sonochem. 41, 234–251 (2018)CrossRefGoogle Scholar
  11. 11.
    H. Lindner, E. Schneider, Review of cost estimates for uranium recovery from seawater. Energy Econ. 49, 9–22 (2015)CrossRefGoogle Scholar
  12. 12.
    S.G. Thangavelu, C.L. Cahill, Uranyl-promoted peroxide generation: synthesis and characterization of three uranyl peroxo [(UO2) 2 (O2)] complexes, Inorganic chemistry, 54 (2015) 4208–4221Google Scholar
  13. 13.
    Y. Wang, Z. Liu, Y. Li, Z. Bai, W. Liu, Y. Wang, X. Xu, C. Xiao, D. Sheng, J. Diwu, Umbellate distortions of the uranyl coordination environment result in a stable and porous polycatenated framework that can effectively remove cesium from aqueous solutions. J. Am. Chem. Soc. 137, 6144–6147 (2015)CrossRefGoogle Scholar
  14. 14.
    A.K. Ebrahimi, I. Sheikhshoaie, M. Mehran, Facile synthesis of a new metal-organic framework of copper (II) by interface reaction method, characterization, and its application for removal of malachite green. J. Mol. Liq. 240, 803–809 (2017)CrossRefGoogle Scholar
  15. 15.
    L. Pan et al., MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis. Appl. Catal. B 189, 181–191 (2016)CrossRefGoogle Scholar
  16. 16.
    M. Bagheri, M.Y. Masoomi, A. Morsali, A MoO3-metal–organic framework composite as a simultaneous photocatalyst and catalyst in the PODS process of light oil. ACS Catal. 7, 6949–6956 (2017)CrossRefGoogle Scholar
  17. 17.
    O. Yadav, Research article removal of phenol red dye from contaminated water using barley (Hordeum vulgare L.) husk-derived activated carbon nigussie alebachew department of chemistry, Haramaya University, PO Box 138, Dire Dawa, Ethiopia, Sci. Int., 5 (2017)CrossRefGoogle Scholar
  18. 18.
    N. Mubarak, N. Sazila, S. Nizamuddin, E. Abdullah, J. Sahu, Adsorptive removal of phenol from aqueous solution by using carbon nanotubes and magnetic biochar. NanoWorld J. 3, 32–37 (2017)CrossRefGoogle Scholar
  19. 19.
    Y. Liu, D. Ying, Y. Cai, X. Le, Improved antioxidant activity and physicochemical properties of curcumin by adding ovalbumin and its structural characterization. Food Hydrocoll. 72, 304–311 (2017)CrossRefGoogle Scholar
  20. 20.
    S.M. Butorin, K.O. Kvashnina, D. Prieur, M. Rivenet, P.M. Martin, Characteristics of chemical bonding of pentavalent uranium in La-doped UO 2. Chem. Commun. 53, 115–118 (2017)CrossRefGoogle Scholar
  21. 21.
    J.-H. Zhu, X. Zhao, J. Yang, Y.-T. Tan, L. Zhang, S.-P. Liu, Z.-F. Liu, X.-L. Hu, Selective colorimetric and fluorescent quenching determination of uranyl ion via its complexation with curcumin. Spectrochim. Acta Part A 159, 146–150 (2016)CrossRefGoogle Scholar
  22. 22.
    G. Sargazi, D. Afzali, N. Daldosso, H. Kazemian, N. Chauhan, Z. Sadeghian, T. Tajerian, A. Ghafarinazari, M. Mozafari, A systematic study on the use of ultrasound energy for the synthesis of nickel–metal–organic framework compounds. Ultrason. Sonochem. 27, 395–402 (2015)CrossRefGoogle Scholar
  23. 23.
    B. Mu, K.S. Walton, Thermal analysis and heat capacity study of metal–organic frameworks. J. Phys. Chem. C 115, 22748–22754 (2011)CrossRefGoogle Scholar
  24. 24.
    A.A. Alqadami, M.A. Khan, M.R. Siddiqui, Z.A. Alothman, Development of citric anhydride anchored mesoporous MOF through post synthesis modification to sequester potentially toxic lead (II) from water. Microporous Mesoporous Mater. 261, 198–206 (2018)CrossRefGoogle Scholar
  25. 25.
    G. Sargazi, D. Afzali, A. Mostafavi, S.Y. Ebrahimipour, Ultrasound-assisted facile synthesis of a new tantalum (V) metal-organic framework nanostructure: design, characterization, systematic study, and CO 2 adsorption performance. J. Solid State Chem. 250, 32–48 (2017)CrossRefGoogle Scholar
  26. 26.
    G. Sargazi, D. Afzali, A. Mostafavi, An efficient and controllable ultrasonic-assisted microwave route for flower-like Ta (V)–MOF nanostructures: preparation, fractional factorial design, DFT calculations, and high-performance N 2 adsorption, J. Porous Mater. (2018). CrossRefGoogle Scholar
  27. 27.
    J.A. Darr, J. Zhang, N.M. Makwana, X. Weng, Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chem. Rev. 117, (2017) 11125–11238CrossRefGoogle Scholar
  28. 28.
    Z. Liu, R. Yu, Y. Dong, W. Li, B. Lv, The adsorption behavior and mechanism of Cr (VI) on 3D hierarchical α-Fe2O3 structures exposed by (0 0 1) and non-(0 0 1) planes. Chem. Eng. J. 309, 815–823 (2017)CrossRefGoogle Scholar
  29. 29.
    K. Liang, R. Ricco, C.M. Doherty, M.J. Styles, S. Bell, N. Kirby, S. Mudie, D. Haylock, A.J. Hill, C.J. Doonan, Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 6, 7240 (2015)CrossRefGoogle Scholar
  30. 30.
    D.D. Dionysiou, G.L. Puma, J. Ye, J. Schneider, D. Bahnemann, Photocatalysis: applications (Royal Society of Chemistry, London, 2016)CrossRefGoogle Scholar
  31. 31.
    H. Benhebal, M. Chaib, T. Salmon, J. Geens, A. Leonard, S.D. Lambert, M. Crine, B. Heinrichs, Photocatalytic degradation of phenol and benzoic acid using zinc oxide powders prepared by the sol–gel process. Alex. Eng. J. 52, 517–523 (2013)CrossRefGoogle Scholar
  32. 32.
    H.S. Wahab, A.A. Hussain, Photocatalytic oxidation of phenol red onto nanocrystalline TiO2 particles. J. Nanostr. Chem. 6, 261–274 (2016)CrossRefGoogle Scholar
  33. 33.
    M. Shishkin, D. Volkov, I. Pelivanov, M. Proskurnin, Direct solubility determination in optically dense solutions of highly soluble chromophores by the optoacoustic technique: acidity dependence for phenol red. Anal. Chim. Acta 953 (2017) 57–62CrossRefGoogle Scholar
  34. 34.
    A.P. Simezo, C.E. da Silveira Bueno, R.S. Cunha, R.A. Pelegrine, D.G.P. Rocha, A.S. de Martin, A.S. Kato, Comparative analysis of dentinal erosion after passive ultrasonic irrigation versus irrigation with reciprocating activation: an environmental scanning electron study. J Endod. 43, 141–146 (2017)CrossRefGoogle Scholar
  35. 35.
    G. Sargazi, D. Afzali, A. Mostafavi, S.Y. Ebrahimipour, Synthesis of CS/PVA biodegradable composite nanofibers as a microporous material with well controllable procedure through electrospinning, J. Polym. Environ. (2017) 1–14Google Scholar
  36. 36.
    L. Xu, W. Sun, L. Zhang, M. Zhang, Y. Wang, S. Yu, Facile synthesis of α-Fe 2 O 3/diatomite composite for visible light assisted degradation of Rhodamine 6G in aqueous solution. J. Mater. Sci. 28, 4661–4668 (2017)Google Scholar
  37. 37.
    M. Ghiyasiyan-Arani, M. Salavati-Niasari, M. Masjedi-Arani, F. Mazloom, An easy sonochemical route for synthesis, characterization and photocatalytic performance of nanosized FeVO4 in the presence of aminoacids as green capping agents. J. Mater. Sci. 29, 474–485 (2018)Google Scholar
  38. 38.
    F. Mazloom, M. Masjedi-Arani, M. Salavati-Niasari, Rapid and solvent-free solid-state synthesis and characterization of Zn3V2O8 nanostructures and their phenol red aqueous solution photodegradation. Solid State Sci. 70, 101–109 (2017)CrossRefGoogle Scholar
  39. 39.
    W. Jiang, J. Yang, X. Wang, H. Han, Y. Yang, J. Tang, Q. Li, Phenol degradation catalyzed by a peroxidase mimic constructed through the grafting of heme onto metal-organic frameworks. Bioresour. Technol. 247, 1246–1248 (2018)CrossRefGoogle Scholar
  40. 40.
    G.S. Silveira, M.A. Nobre, S. Lanfredi, Photodegradation of Phenol Red in a Compound of Type ZnO2Cr Core/Shell. Mater. Sci. Forum 881, 410–415 (2017)CrossRefGoogle Scholar
  41. 41.
    A.M. Asiri, M.S. Al-Amoudi, T.A. Al-Talhi, A.D. Al-Talhi, Photodegradation of Rhodamine 6G and phenol red by nanosized TiO2 under solar irradiation. J. Saudi Chem. Soc. 15, 121–128 (2011)CrossRefGoogle Scholar
  42. 42.
    S. Belattar, N. Debbache, I. Ghoul, T. Sehili, A. Abdessemed, Photodegradation of phenol red in the presence of oxyhydroxide of Fe (III)(Goethite) under artificial and a natural light. Water Environ. J. CrossRefGoogle Scholar
  43. 43.
    R. Dhanalakshmi, M. Muneeswaran, N. Giridharan, Effect of synthesis conditions on the photocatalytic property of multiferroic BiFeO3 towards the degradation of phenol red, In: AIP Conference Proceedings, (AIP Publishing, 2016), p. 130016Google Scholar
  44. 44.
    G. Sargazi, D. Afzali, A.K. Ebrahimi, A. Badoei-dalfard, S. Malekabadi, Z. Karami, Ultrasound assisted reverse micelle efficient synthesis of new Ta-MOF@ Fe3O4 core/shell nanostructures as a novel candidate for lipase immobilization. Mater. Sci. Eng. C 93, 768–775 (2018)CrossRefGoogle Scholar
  45. 45.
    S. Janitabar Darzi, M. Movahedi, Visible light photodegradation of phenol using nanoscale TiO2 and ZnO impregnated with merbromin dye: a mechanistic investigation. Iranian J. Chem. Chem. Eng. (IJCCE) 33, 55–64 (2014)Google Scholar
  46. 46.
    T. Teka, A. Tadesse, Effect of selected operating parameters on the photocatalytic efficiency of nitrogen-doped TiO^ sub 2^/WO^ sub 3^ nano-composite material for photodegradation of phenol red in aqueous solution. Int. J. Innovat. Appl. Stud. 7, 174 (2014)Google Scholar
  47. 47.
    S. Lanfredi, M.A. Nobre, P.G. Moraes, J. Matos, Photodegradation of phenol red on a Ni-doped niobate/carbon composite. Ceram. Int. 40, 9525–9534 (2014)CrossRefGoogle Scholar
  48. 48.
    X. Lin, S. Jiang, Z. Lin, M. Wang, Y. Yan, The influence of g-C3N4 loading on the photocatalytic activity of Bi12O17Br2/Bi2O3 composite in the phenol red degradation, In: IOP Conference Series: Materials Science and Engineering, (IOP Publishing, 2016), p. 012020Google Scholar
  49. 49.
    T. Tan, P. Khiew, W. Chiu, S. Radiman, R. Abd-Shukor, N. Huang, H. Lim, Photodegradation of phenol red in the presence of ZnO nanoparticles. World Acad. Sci. Eng. Technol. 79, 791–796 (2011)Google Scholar
  50. 50.
    N. Laoufi, D. Tassalit, F. Bentahar, The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor. Glob. NEST J. 10, 404–418 (2008)Google Scholar
  51. 51.
    B. Galbičková, M. Soldán, M. Belčík, K. Balog, Removal Of phenol from wastewater by using low-cost catalyst from metal production. Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol. 22, 55–59 (2014)Google Scholar
  52. 52.
    H. Hamdi, A. Namane, D. Hank, A. Hellal, Coupling of photocatalysis and biological treatment for phenol degradation: application of factorial design methodology. J. Mater. 8, 3953–3961 (2017)Google Scholar
  53. 53.
    D. Trinh, S. Le, D. Channei, W. Khanitchaidecha, A. Nakaruk, Investigation of intermediate compounds of phenol in photocatalysis process. Int. J. Chem. Eng. App 7, 273–276 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Farideh Miri Khandan
    • 1
  • Daryoush Afzali
    • 1
    • 2
    Email author
  • Ghasem Sargazi
    • 1
  • Mohammad Gordan
    • 3
  1. 1.Department of NanotechnologyGraduate University of Advanced TechnologyKermanIran
  2. 2.Environment and Nanochemistry Department, Research Institute of Environmental ScienceInternational Center for Science, High Technology & Environmental ScienceKermanIran
  3. 3.Department of Material Science and EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations