Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18566–18572 | Cite as

Effect of chalcogen substitution on aqueous dispersions of poly(3,4-ethylenedioxythiophene)s:poly(4-styrenesulfonate) and their flexible conducting films

  • Wenna Zhang
  • Wenwen Zhang
  • Zexu Xue
  • Yu Xue
  • Jingkun Xu
  • Shuai Chen
  • Ge Zhang
Article
  • 47 Downloads

Abstract

Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) is a hotspot among current researched conducting polymers and its conductivity could be significantly enhanced by post-treatment with dimethyl sulphoxide (DMSO). In this work, five S and Se analogues of 3,4-ethylenedioxythiophene (EDOT) were synthesized, and chemically oxidative polymerized (COP) to obtain corresponding free-standing films of Poly(3,4-ethylenedioxythiophene)s:poly(4-styrenesulfonate) (PEDOTs:PSS). The effect of chalcogen substitution on the physicochemical properties and conductive performances of PEDOT:PSS film have been demonstrated. In contrast to the conductivities about 10−2–10−1 S cm−1 for PEDOT:PSS and poly(3,4-ethylenedioxyselenophene):poly(4-styrenesulfonate) (PEDOS:PSS), other PEDOTs:PSS films had the conductivities about 10−4–10−5 S cm−1. The conductive enhancement effect of DMSO second-doping is suitable for PEDOTs:PSS films except the all-sulfur analogs of PEDOT:PSS (PEDTT:PSS and PEDTS:PSS), and the critical role of the presence of the O atoms in the ethylene bridges and the S atom in the thiophene ring has been illustrated. This work may help understand the structure-performance relationship of PEDOT family and the further development of PEDOTs in areas where the PEDOT seems monotonous and the high conductivity is not necessary, such as antistatic coating, anticorrosive coating, multi-colored electrochromics and so on.

Notes

Acknowledgements

We are grateful to the National Natural Science Foundation of China (Nos. 51603095 and 51763010), Innovation Driven “5511” Project of Jiangxi Province (No. 20165BCB18016), Key Project of Jiangxi Educational Committee (GJJ170657), Science Foundation for Excellent Youth Talents in Jiangxi Province (No. 20162BCB23053), the Natural Science Foundation of Jiangxi Province (Nos. 20161BAB216130 and 20181ACB20010), Scientific Fund of Jiangxi Science & Technology Normal University (2016QNBJRC003), Jiangxi Educational Committee for a Postgraduate Innovation Program Grant (No. YC2017-S408), for their financial support of this work.

References

  1. 1.
    T.G. Kim, S.R. Ha, H. Choi, K. Uh, U. Kundapur, S. Park, C.W. Lee, S.H. Lee, J.Y. Kim, J.M. Kim, ACS Appl. Mater. Interfaces 9, 19231 (2017)CrossRefGoogle Scholar
  2. 2.
    Y.Y. Dai, W.J. Li, S.M. Yan, S.Z. Wang, Y. Yu, M. Ouyang, L.T. Chen, C. Zhang, Acta Phys.-Chim. Sin. 33, 2268 (2017)Google Scholar
  3. 3.
    Q.F. Meng, K.F. Cai, Y.X. Chen, L.D. Chen, Nano Energy 36, 268 (2017)CrossRefGoogle Scholar
  4. 4.
    H. Shi, C.C. Liu, Q.L. Jiang, J.K. Xu. Adv. Electron. Mater. 1, 1500017 (2015)CrossRefGoogle Scholar
  5. 5.
    J.Y. Ouyang, Displays 34, 423 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Chen, B.Y. Lu, X.M. Duan, J.K. Xu, J. Polym. Sci. Pol. Chem. 50, 1967 (2012)CrossRefGoogle Scholar
  7. 7.
    Z.P. Wang, D.Z. Mo, S. Chen, J.K. Xu, B.Y. Lu, Q.L. Jiang, Z.L. Feng, J.H. Xiong, S.J. Zhen, J. Polym. Sci. Pol. Chem. 53, 2285 (2015)CrossRefGoogle Scholar
  8. 8.
    Z.P. Wang, D.Z. Mo, X.M. Ma, J.K. Xu, W.Q. Zhou, Q.L. Jiang, Z.L. Feng, J.H. Xiong, D.H. Zhu, Q.J. Zhou, Electrochim. Acta 184, 338 (2015)CrossRefGoogle Scholar
  9. 9.
    M.A.J. Al-Jumaili, S. Woodward, Tetrahedron 73, 5847 (2017)CrossRefGoogle Scholar
  10. 10.
    H.T. Liu, W.Q. Zhou, X.M. Ma, S. Chen, S.L. Ming, K.W. Lin, B.Y. Lu, J.K. Xu, Electrochim. Acta 220, 340 (2016)CrossRefGoogle Scholar
  11. 11.
    Y.H. Wijsboom, Y. Sheynin, A. Patra, N. Zamoshchik, R. Vardimon, G. Leitus, M. Bendikov, J. Mater. Chem. 21, 1368 (2011)CrossRefGoogle Scholar
  12. 12.
    Y.H. Wijsboom, A. Patra, S.S. Zade, Y. Sheynin, M. Li, L.L.W. Shimon, M. Bendikov, Angew. Chem.-Int. Ed. 48, 5443 (2009)CrossRefGoogle Scholar
  13. 13.
    C. Xiong, H. Qu, W. Chen, L.J. Zhang, L.Z. Qiu, L. Zheng, F. Xia, Sci. Chi-Chem. 60, 1205 (2017)CrossRefGoogle Scholar
  14. 14.
    W.S. Liang, L.J. Xu, S. Sun, L.F. Lan, X.Q. Qiu, R.F. Chen, Y. Li, ACS Sustain. Chem. Eng. 5, 460 (2017)CrossRefGoogle Scholar
  15. 15.
    Y. Chen, Y. Feng, J. Gao, M. Bouvet, J. Colloid Interface Sci. 368, 387 (2012)CrossRefGoogle Scholar
  16. 16.
    P. Vacca, M. Petrosino, R. Miscioscia, G. Nenna, C. Minarini, D.D. Sala, A. Rubino, Thin Solid Films 516, 4232 (2008)CrossRefGoogle Scholar
  17. 17.
    J.Y. Kim, J.H. Jung, D.E. Lee, J. Joo, Synth. Met. 126, 311 (2002)CrossRefGoogle Scholar
  18. 18.
    F.X. Jiang, J.K. Xu, B.Y. Lu, Y. Xie, R.J. Huang, L.F. Li, Chin. Phys. Lett. 25, 2202 (2008)CrossRefGoogle Scholar
  19. 19.
    T.M. Abdel-Fattah, E.M. Younes, G. Namkoong, E.M. El-Maghraby, A.H. Elsayed, A.H.A. Elazm, Sol. Energy 137, 337 (2016)CrossRefGoogle Scholar
  20. 20.
    F.L. Wu, P.C. Li, K. Sun, Y.L. Zhou, W. Chen, J.H. Fu, M. Li, S.R. Lu, D.S. Wei, X.S. Tang, Z.G. Zang, L.D. Sun, X.X. Liu, J.Y. Ouyang, Adv. Electron. Mater. 3, 1700047 (2017)CrossRefGoogle Scholar
  21. 21.
    Q. Zhang, Y. Sun, W. Xu, D.B. Zhu, Adv. Mater. 26, 6829 (2014)CrossRefGoogle Scholar
  22. 22.
    H.J. Spencer, P.J. Skabara, M. Giles, I. McCulloch, S.J. Coles, M.B. Hursthouse, J. Mater. Chem. 15, 4783 (2005)CrossRefGoogle Scholar
  23. 23.
    X.Q. Jiang, Acta Chim. Sin. 65, 2649 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PharmacyJiangxi Science & Technology Normal UniversityNanchangChina
  2. 2.Jiangxi Engineering Laboratory of Waterborne CoatingsNanchangChina
  3. 3.School of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdaoChina

Personalised recommendations