Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18553–18565 | Cite as

Improved electrochemical performances of LiMnPO4 synthesized by a hydrothermal method for Li-ion supercapatteries

  • Natarjan Priyadharsini
  • Amirthalingam Shanmugavani
  • Subramani Surendran
  • Baskar Senthilkumar
  • Leonid Vasylechko
  • Ramakrishnan Kalai Selvan
Article

Abstract

Developing high-performance positrode materials are essential to attain high energy supercapatteries. In this regard, the electrochemical performances of the hydrothermally synthesized LiMnPO4 are studied. The crystal structures of the materials are elucidated using Full-profile XRD Rietveld refinement. The LiMnPO4 particles showed uniform elongated spherical shape with rice-like morphology. The rice-like LiMnPO4 showed a higher specific capacity of 492 C g−1 at 2 mV s−1 than highly agglomerated particles synthesized through sol–gel thermolysis method (191 C g−1) in 1 M LiOH aqueous electrolyte. The supercapattery is fabricated with rice-like LiMnPO4 and activated carbon (AC) as positrode and negatrode, respectively. The supercapattery (AC||LMP-H) delivered a higher capacitance around 99 F g−1 along with an improved energy density of 31 Wh kg−1. On the other hand, the LiMnPO4 prepared by sol–gel thermolysis method exhibited a very low capacitance of 35 F g−1 at 0.6 mA for the fabricated device (AC||LMP-S) with the lesser energy density about 11 Wh Kg−1 at a power density of 198 W kg−1. The reason behind the improved performance is explained based on the crystal structure as well as lower charge transfer resistance.

Notes

Acknowledgements

One of the authors L. Vasylechko acknowledges the Ministry of Education and Sciences of Ukraine for partial support under Project DB/FerytN0118U000264.

References

  1. 1.
    L. Yu, G.Z. Chen, Redox electrode materials for supercapatteries. J. Power Sources 326, 604–612 (2016).  https://doi.org/10.1016/j.jpowsour.2016.04.095 CrossRefGoogle Scholar
  2. 2.
    Y. Ma, H. Chang, M. Zhang, Y. Chen, Graphene-based materials for lithium-ion hybrid supercapacitors. Adv. Mater. 27(36), 5296–5308 (2015).  https://doi.org/10.1002/adma.201501622 CrossRefGoogle Scholar
  3. 3.
    F. Shi, L. Lu, X.L. Wang, C.D. Gu, J.P. Tu, Metal oxide/hydroxide-based materials for supercapacitors. RSC Adv. 4(79), 41910–41921 (2014).  https://doi.org/10.1039/C4RA06136E CrossRefGoogle Scholar
  4. 4.
    Q. Xia, M. Xu, H. Xia, J. Xie, Nanostructured Iron oxide/hydroxide-based electrode materials for supercapacitors. ChemNanoMat 2(7), 588–600 (2016).  https://doi.org/10.1002/cnma.201600110 CrossRefGoogle Scholar
  5. 5.
    W. Chen, C. Xia, H.N. Alshareef, One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 8(9), 9531–9541 (2014).  https://doi.org/10.1021/nn503814y CrossRefGoogle Scholar
  6. 6.
    S. Surendran, S. Shanmugapriya, S. Shanmugam, L. Vasylechko, R. Kalai Selvan, Interweaved nickel phosphide sponge as an electrode for flexible supercapattery and water splitting applications. ACS Appl. Energy Mater. 1(1), 78–92 (2018).  https://doi.org/10.1021/acsaem.7b00006 CrossRefGoogle Scholar
  7. 7.
    X. Li, A.M. Elshahawy, C. Guan, J. Wang, Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 13(39), 1701530 (2017).  https://doi.org/10.1002/smll.201701530 CrossRefGoogle Scholar
  8. 8.
    D. Yang, Z. Lu, X. Rui, X. Huang, H. Li, J. Zhu, W. Zhang, Y.M. Lam, H.H. Hng, H. Zhang, Q. Yan, Synthesis of two-dimensional transition-metal phosphates with highly ordered mesoporous structures for lithium-ion battery applications. Angew. Chem. 126(35), 9506–9509 (2014).  https://doi.org/10.1002/ange.201404615 CrossRefGoogle Scholar
  9. 9.
    X. Li, X. Xiao, Q. Li, J. Wei, H. Xue, H. Pang, Metal (M = Co, Ni) phosphate based materials for high-performance supercapacitors. Inorg. Chem. Front. 5, 11–28 (2018).  https://doi.org/10.1039/C7QI00434F CrossRefGoogle Scholar
  10. 10.
    Y. Fang, J. Zhang, L. Xiao, X. Ai, Y. Cao, H. Yang, Phosphate framework electrode materials for sodium ion batteries. Adv. Sci. 4(5), 1600392 (2017).  https://doi.org/10.1002/advs.201600392 CrossRefGoogle Scholar
  11. 11.
    Y. Zhan, M. Lu, S. Yang, C. Xu, Z. Liu, J.Y. Lee, Activity of transition-metal (manganese, iron, cobalt, and nickel) phosphates for oxygen electrocatalysis in alkaline solution. ChemCatChem 8(2), 372–379 (2016).  https://doi.org/10.1002/cctc.201500952 CrossRefGoogle Scholar
  12. 12.
    A. Vlad, N. Singh, J. Rolland, S. Melinte, P.M. Ajayan, J.F. Gohy, Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci. Rep. 4, 4315 (2014).  https://doi.org/10.1038/srep04315 CrossRefGoogle Scholar
  13. 13.
    A.K. Sahu, S. Pitchumani, P. Sridhar, A.K. Shukla, Co-assembly of a Nafion-mesoporous zirconium phosphate composite membrane for PEM fuel cells. Fuel Cells 9(2), 139–147 (2009).  https://doi.org/10.1002/fuce.200800178 CrossRefGoogle Scholar
  14. 14.
    D. Kong, J.J. Cha, H. Wang, H.R. Lee, Y. Cui, First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 6, 3553–3558 (2013).  https://doi.org/10.1039/C3EE42413H CrossRefGoogle Scholar
  15. 15.
    R. Reeve, P.A. Christensen, A.J. Dickinson, A. Hamnett, K. Scott, Methanol-tolerant oxygen reduction catalysts based on transition metal sulfides and their application to the study of methanol permeation. Electrochim. Acta 45(25–26), 4237–4250 (2000).  https://doi.org/10.1016/S0013-4686(00)00556-9 CrossRefGoogle Scholar
  16. 16.
    P. Nie, L. Shen, F. Zhang, L. Chen, H. Deng, X. Zhang, Flower-like LiMnPO4 hierarchical microstructures assembled from single-crystalline nanosheets for lithium-ion batteries. CrystEngComm 14(13), 4284–4288 (2012).  https://doi.org/10.1039/C2CE25094B CrossRefGoogle Scholar
  17. 17.
    L. Zhang, Q. Qu, L. Zhang, J. Li, H. Zheng, Confined synthesis of hierarchical structured LiMnPO4/C granules by a facile surfactant-assisted solid-state method for high-performance lithium-ion batteries. J. Mater. Chem. A. 2(3), 711–719 (2014).  https://doi.org/10.1039/C3TA14010E CrossRefGoogle Scholar
  18. 18.
    J.V. Laveda, B. Johnson, G.W. Paterson, P.J. Baker, M.G. Tucker, H.Y. Playford, K.M.O. Jenson, S.J.L. Bilinge, S.A. Corr, Structure-property insights into nanostructured electrodes for Li-ion batteries from local structural and diffusional probes. J. Mater. Chem. A 6(1), 127–137 (2018).  https://doi.org/10.1039/C7TA04400C CrossRefGoogle Scholar
  19. 19.
    L. Xu, S. Wang, X. Zhang, T. He, F. Lu, H. Li, J. Ye, A facile method of preparing LiMnPO4/reduced graphene oxide aerogel as cathodic material for aqueous lithium-ion hybrid supercapacitors. Appl. Surf. Sci. 428, 977–985 (2018).  https://doi.org/10.1016/j.apsusc.2017.09.247 CrossRefGoogle Scholar
  20. 20.
    S.R.S. Prabaharan, R.A. Star, A.R. Kulkarni, M.S. Michael, Nano-composite LiMnPO4 as new insertion electrode for electrochemical supercapacitors. Curr. Appl. Phys. 15(12), 1624–1633 (2015).  https://doi.org/10.1016/j.cap.2015.09.009 CrossRefGoogle Scholar
  21. 21.
    T. Drezen, N.H. Kwon, P. Bowen, I. Teerlinck, M. Isono, I. Exnar, Effect of particle size on LiMnPO4 cathodes. J. Power Sources 174(2), 949–953 (2007).  https://doi.org/10.1016/j.jpowsour.2007.06.203 CrossRefGoogle Scholar
  22. 22.
    G. Yang, H. Ni, H. Liu, P. Gao, H. Ji, S. Roy, J. Pinto, X. Jiang, The doping effect on the crystal structure and electrochemical properties of LiMnxM1–xPO4 (M = Mg, V, Fe, Co, Gd). J. Power Sources 196(10), 4747–4755 (2011).  https://doi.org/10.1016/j.jpowsour.2011.01.064 CrossRefGoogle Scholar
  23. 23.
    J. Fan, Y. Yu, Y. Wang, Q.H. Wu, M. Zheng, Q. Dong, Nonaqueous synthesis of nano-sized LiMnPO4@C as a cathode material for high performance lithium ion batteries. Electrochim. Acta 194, 52–58 (2016).  https://doi.org/10.1016/j.electacta.2016.02.090 CrossRefGoogle Scholar
  24. 24.
    N.P.W. Pieczonka, Z. Liu, A. Huq, J.H. Kim, Comparative study of LiMnPO4/C cathodes synthesized by polyol and solid-state reaction methods for Li-ion batteries. J. Power Sources 230, 122–129 (2013).  https://doi.org/10.1016/j.jpowsour.2012.12.027 CrossRefGoogle Scholar
  25. 25.
    N.N. Bramnik, H. Ehrenberg, Precursor-based synthesis and electrochemical performance of LiMnPO4. J. Alloys Compd. 464(1–2), 259–264 (2008).  https://doi.org/10.1016/j.jallcom.2007.09.118 CrossRefGoogle Scholar
  26. 26.
    S. Zhang, F.L. Meng, Q. Wu, F.L. Liu, H. Gao, M. Zhang, C. Deng, Synthesis and characterization of LiMnPO4 nanoparticles prepared by a citric acid assisted sol-gel method. Int. J. Electrochem. Sci. 8(5), 6603–6609 (2013)Google Scholar
  27. 27.
    H. Fang, Z. Pan, L. Li, Y. Yang, G. Yan, G. Li, The possibility of manganese disorder LiMnPO4 and its effect on the electrochemical activity. Electrochem. Commun. 10(7), 1071–1073 (2008).  https://doi.org/10.1016/j.elecom.2008.05.010 CrossRefGoogle Scholar
  28. 28.
    C. Feldmann, Polyol-mediated synthesis of nanoscale functional materials. Adv. Funct. Mater. 13(2), 101–107 (2003).  https://doi.org/10.1002/adfm.200390014 CrossRefGoogle Scholar
  29. 29.
    C.C. Wang, J.Y. Ying, Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 11(11), 3113–3120 (1999).  https://doi.org/10.1021/cm990180f CrossRefGoogle Scholar
  30. 30.
    M. Srivastava, S. Chaubey, A.K. Ojha, Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol-gel and hydrothermal methods. Mater. Chem. Phys. 118(1), 174–180 (2009).  https://doi.org/10.1016/j.matchemphys.2009.07.023 CrossRefGoogle Scholar
  31. 31.
    J. Chen, M.J. Vacchio, S. Wang, N. Chernova, P.Y. Zavalij, M.S. Whittingham, The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications. Solid State Ion. 178(31–32), 1676–1693 (2008).  https://doi.org/10.1016/j.ssi.2007.10.015 CrossRefGoogle Scholar
  32. 32.
    T. Stefanidis, A.G. Nord, Structure studies of thortveitite-like dimanganese diphosphate, Mn2P2O7. Acta Crystallogr. Sect. C 40, 1995–1999 (1984).  https://doi.org/10.1107/S0108270184010374 CrossRefGoogle Scholar
  33. 33.
    J. Yao, S. Bewlay, K. Konstantionv, V.A. Drozd, R.S. Liu, X.L. Wang, H.K. Liu, G.X. Wang, Characterisation of olivine-type LiMnxFe1–xPO4 cathode materials. J. Alloys Compd. 425(1–2), 362–366 (2006).  https://doi.org/10.1016/j.jallcom.2006.01.038 CrossRefGoogle Scholar
  34. 34.
    V. Koleva, R. Stoyanova, E. Zhecheva, Nano-crystalline LiMnPO4 prepared by a new phosphate-formate precursor method. Mater. Chem. Phys. 121(1–2), 370–377 (2010).  https://doi.org/10.1016/j.matchemphys.2010.01.043 CrossRefGoogle Scholar
  35. 35.
    V. Koleva, E. Zhecheva, R. Stoyanova, Ordered olivine-type lithium-cobalt and lithium-nickel phosphates prepared by a new precursor method. Eur. J. Inorg. Chem. 26, 4091–4099 (2010).  https://doi.org/10.1002/ejic.201000400 CrossRefGoogle Scholar
  36. 36.
    M. Liao, Y. Liu, Z. Hu, Q. Yu, Novel morphologic Co3O4 of flower-like hierarchical microspheres as electrode material for electrochemical capacitors. J. Alloys Compd. 562, 106–110 (2013).  https://doi.org/10.1016/j.jallcom.2013.01.120 CrossRefGoogle Scholar
  37. 37.
    S. Trasatti, Physical electrochemistry of ceramic oxides. Electrochim. Acta 36, 225–241 (1991).  https://doi.org/10.1016/0013-4686(91)85244-2 CrossRefGoogle Scholar
  38. 38.
    S.M.S. Bhat, B. Babu, M. Feygenson, J.C. Neuefeind, M.M. Shaijumon, Nanostructured Na2Ti9O19 for hybrid sodium-ion capacitors with excellent rate capability. ACS Appl. Mater. Interfaces 10, 437–447 (2018).  https://doi.org/10.1021/acsami.7b13300 CrossRefGoogle Scholar
  39. 39.
    C.C. Lee, F.S. Omar, A. Numan, N. Duraisamy, K. Ramesh, S. Ramesh, An enhanced performance of hybrid supercapacitor based on polyaniline-manganese phosphate binary composite. J. Solid State Electrochem. 21(11), 3205–3213 (2017).  https://doi.org/10.1007/s10008-017-3624-1 CrossRefGoogle Scholar
  40. 40.
    Y.H. Dai, L.B. Kong, K. Yan, M. Shi, Y.C. Luo, L. Kang, Facile fabrication of manganese phosphate nanosheets for supercapacitor applications. Ion. 22(8), 1461–1469 (2016).  https://doi.org/10.1007/s11581-016-1652-y CrossRefGoogle Scholar
  41. 41.
    A.A. Mirghini, M.J. Madito, M.J.,T.M. Mashikhwa, K.O. Oyedotun, A. Bello, N. Manyala, Hydrothermal synthesis of manganese phosphate/graphene foam composite for electrochemical supercapacitor applications. J. Colloid Interface Sci. 494, 325–337 (2017).  https://doi.org/10.1016/j.jcis.2017.01.098 CrossRefGoogle Scholar
  42. 42.
    Y. Liu, D. Yan, Y. Li, Z. Wu, R. Zhuo, S. Li, J. Feng, J. Wang, P. Yan, Z. Geng, Manganese dioxide nanosheet arrays grown on graphene oxide as an advanced electrode material for supercapacitors. Electrochim. Acta 117, 528–533 (2014).  https://doi.org/10.1016/j.electacta.2013.11.121 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Energy Storage and Conversion Devices Laboratory, Department of PhysicsBharathiar UniversityCoimbatoreIndia
  2. 2.Department of PhysicsPSGR Krishnammal College for WomenCoimbatoreIndia
  3. 3.Faraday Materials Laboratory, Materials Research CentreIndian Institute of ScienceBangaloreIndia
  4. 4.Semiconductor Electronics DepartmentLviv Polytechnic National UniversityLvivUkraine

Personalised recommendations