Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18531–18539 | Cite as

Synthesis, photocatalytic, optical, electronic and biological properties of the CoS2–CuS on cellulose nanocomposites as novel nano catalyst by a sonochemical technology

  • Zhi-Bo Zheng
  • Jiang-Jie Sun
  • Ali Fakhri
  • A. Surendar
  • Aygul Z. Ibatova
  • Jia-Bao Liu
Article
  • 58 Downloads

Abstract

CoS2–CuS nanocomposites were synthesized through a simple ultrasound-assisted sol–gel technology facilely. The preparation of CoS2–CuS on cellulose fiber was carried out successfully. The microstructure, surface morphology and the optical properties of the as-synthesized catalyst samples had been considered with the XRD, SEM, UV–Vis spectra and photoluminescence. The chemical states of samples were checked with XPS. The mean crystallite sizes of CuS nanoparticles, CoCu-1 and CoCu-1/CNF are 20.85, 44.0, and 74.14 nm, respectively. The band-gap values was found 2.18, 2.14 and 2.11 eV for CuS nanoparticles, CoCu-1 and CoCu-1/CNF, respectively. The photocatalytic properties of the sample were estimated by the degradation of ciprofloxacin and ofloxacin antibiotic with UV-light irradiation. Compared with CuS nanoparticles, CoS2–CuS, the results indicate that the as-prepared CoS2–CuS on cellulose nanocomposites display great photocatalytic properties for the photo-degradation of ciprofloxacin and Ofloxacin. The results demonstrated that the highest amount of degradation (98.11, and 88.0%) of ciprofloxacin and ofloxacin was occured in pH 5 at 60 min under UV irradiation. The high catalytic activity of the CoS2–CuS on cellulose nanocomposites can be attributed to the core–shell-liked nanostructure and the synergistic effect between the CoS2 and the CuS and also, the presence of cellulose fiber causes the surface area of the photocatalyst was improved. These investigations suggest the potential application of CoS2–CuS on cellulose nanocomposites for water purification. The results demonstrated that CoCu-1/CNF nanocomposites had great antibacterial, anti-inflammatory, antioxidant properties.

Notes

Acknowledgements

The authors gratefully acknowledge supporting of this research by the, Islamic Azad University, Science research Branch. The project was supported in part by the Joint Special Foundation on basic research in Local Colleges and Universities for the Science and Technology Department of Yunnan Province of China under Grant No. 2017FH001-106 and the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China under Grant Nos. KJ2016A368, KJ2016A369 and 2016jyxm0552.

References

  1. 1.
    Z.-D. Meng, K. Ullah, L. Zhu, S. Ye, W.-C. Oh, Mater. Sci. Semicond. Process. 27, 173–180 (2014)CrossRefGoogle Scholar
  2. 2.
    K. Subramanyam, N. Sreelekha, D. Amaranatha Reddy, G. Murali, R.P. Vijayalakshmi, Solid State Sci. 65, 68–78 (2017)CrossRefGoogle Scholar
  3. 3.
    D. Caihua Ding, W. Su, Y. Ma, H. Zhao, Jin, Appl. Surf. Sci. 403, 1–8 (2017)CrossRefGoogle Scholar
  4. 4.
    Z. Hang Zhou, H. Lv, M. Liu, H. Liang, Electrochim. Acta 250, 376–383 (2017)CrossRefGoogle Scholar
  5. 5.
    X. Zhang, X.J. Liu, G. Wang, H. Wang, J. Colloid Interface Sci. 505, 23–31 (2017)CrossRefGoogle Scholar
  6. 6.
    M.B. Cortie, A.M. McDonagh, Chem. Rev. 111, 3713 (2011)CrossRefGoogle Scholar
  7. 7.
    X. Chen, R. Paul, L. Dai, Nat. Sci. Rev. 4, 453 (2017)CrossRefGoogle Scholar
  8. 8.
    X. Huang, X.Y. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41, 666 (2012)CrossRefGoogle Scholar
  9. 9.
    Q. Liu, Z. Chang, Z. Li, X.B. Zhang, 2 (2018) 1700231Google Scholar
  10. 10.
    L. Zhu, S.-B. Jo, S. Ye, K. Ullah, W.-C. Oh, J. Ind. Eng. Chem. 22, 264–271 (2015)CrossRefGoogle Scholar
  11. 11.
    W. Li, G. Wang, Y. Feng, Z. Li, Appl. Surf. Sci. 428, 154–164 (2018)CrossRefGoogle Scholar
  12. 12.
    J. Tang, S. Ni, Q. Chen, J. Zhang, X. Yang, Mater. Lett. 201, 13–17 (2017)CrossRefGoogle Scholar
  13. 13.
    L. Pan Zeng, X. Huang, Y. Zhang, Y. Han, Chen, Appl. Surf. Sci. 427, 242–252 (2018)CrossRefGoogle Scholar
  14. 14.
    S. Feng Luan, D. Zhang, K. Chen, Zheng, Xuming Z, Talanta 182, 529–535 (2018)CrossRefGoogle Scholar
  15. 15.
    A. Fayroz, N.M. Sabah, Z. Ahmed, S. Hassan, H. Rasheed, Sens Actuators A 249, 68–76 (2016)CrossRefGoogle Scholar
  16. 16.
    M. Annie Freeda, C.K. Mahadevan, J. Alloy. Compd. 726, 1–10 (2017)CrossRefGoogle Scholar
  17. 17.
    L. Wang, S. Zhao, X. Wu, S. Guo, J. Liu, N. Liu, H. Huang, Yang L, Zhenhui K, RSC Adv. 6, 66893–66899 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Alok Mittal, A. Mittal, V.K. Malviya, Gupta, J. Colloid Interface Sci. 344, 497–507 (2010)CrossRefGoogle Scholar
  19. 19.
    K. Vinod, R. Gupta, A. Jain, S. Nayak, Agarwal, Mater Sci Eng C 31, 1062–1067 (2011)CrossRefGoogle Scholar
  20. 20.
    A. Tawfik, V.K. Saleh, Gupta, J. Colloid Interface Sci. 371, 101–106 (2012)CrossRefGoogle Scholar
  21. 21.
    M.K. Hadi Khani, P. Rofouei, V.K. Arab, Gupta, J Hazard Mater 183, 402–409 (2010)CrossRefGoogle Scholar
  22. 22.
    V.K. Gupta, R. Kumar, A. Nayak, T.A. Saleh, M.A. Barakat, Adv. Coll. Interface. Sci. 193–194, 24–34 (2013)CrossRefGoogle Scholar
  23. 23.
    R. Saravanan, E. Sacari, F. Gracia, M.K. Mohammad, K.G. Vinod, J. Mol. Liq. 221, 1029–1033 (2016)CrossRefGoogle Scholar
  24. 24.
    R. Manoj Devaraj, Saravanan, R. Deivasigamani, V. Gupta, S. Jayadevan. J. Mol. Liq. 221, 930–941 (2016)CrossRefGoogle Scholar
  25. 25.
    R. Saravanan, S. Joicy, V.K. Gupta, V. Narayanan, A. Stephen, Mater. Sci. Eng. C 33, 4725–4731 (2013)CrossRefGoogle Scholar
  26. 26.
    R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, A. Stephen, Mater. Sci. Eng. C 33, 91–98 (2013)CrossRefGoogle Scholar
  27. 27.
    R. Saravanan, E. Thirumal, V.K. Gupta, V. Narayanan, A. Stephen, J. Mol. Liq. 177, 394–401 (2013)CrossRefGoogle Scholar
  28. 28.
    H. Nourali Mohammadi, V.K. Khani, Gupta, J. Colloid Interface Sci. 362, 457–462 (2011)CrossRefGoogle Scholar
  29. 29.
    M. Ahmaruzzaman, K. Vinod, J. Coll. Interface Sci. 362, 457–462 (2011)CrossRefGoogle Scholar
  30. 30.
    A. Tawfik, K. Saleh, V. Gupta, Sep. Purif. Technol. 89, 245–251 (2012)CrossRefGoogle Scholar
  31. 31.
    R. Saravanan, N. Karthikeyan, V.K. Gupta, E. Thirumal, A. Stephen, Mater. Sci. Eng C 33, 2235–2244 (2013)CrossRefGoogle Scholar
  32. 32.
    R. Saravanan, M. Mansoob Khan, V.K. Gupta, E. Mosquera, A. Stephen, J. Colloid Interface Sci. 452, 126–133 (2015)CrossRefGoogle Scholar
  33. 33.
    R. Saravanan, M.M. Khan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, RSC Adv. 5, 34645–34651 (2015)CrossRefGoogle Scholar
  34. 34.
    M. Ghaedi, S. Hajjati, Z. Mahmudi, I. Tyagi, V.K. Gupta, Chem. Eng. J. 268, 28–37 (2015)CrossRefGoogle Scholar
  35. 35.
    V.K. Gupta, N. Atar, M.L. Yola, Z. Üstündağ, L. Uzun. Water Res. 48, 210–217 (2014)CrossRefGoogle Scholar
  36. 36.
    M. Arash Asfaram, S. Ghaedi, Agarwal, I. Tyagi, V. Gupta. RSC Adv. 5, 18438–18450 (2015)CrossRefGoogle Scholar
  37. 37.
    V.K. Gupta, A. Fakhri, S. Agarwal, N. Sadeghi, Int. J. Biol. Macromol. 102, 840–846 (2017)CrossRefGoogle Scholar
  38. 38.
    B. Xin, Z. Ren, P. Wang, J. Liu, L. Jing, H. Fu, Appl. Surf. Sci. 253, 4390–4395 (2007)CrossRefGoogle Scholar
  39. 39.
    A. Fakhri, S. Behrouz, Sol. Energy 112, 163–168 (2015)CrossRefGoogle Scholar
  40. 40.
    V.S. Suvith, D. Philip, Spectrochim. Acta A 118, 526 (2014)CrossRefGoogle Scholar
  41. 41.
    P.C. Nagajyothi, T.V.M. Sreekanth, J. Lee, K.D. Lee, J. Photochem. Photobiol. B 130, 299 (2013)CrossRefGoogle Scholar
  42. 42.
    C.-J. Chen, P.-T. Chen, M. Basu, M. Basu, R.-S. Liu, J. Mater. Chem. A, 3, 46 (2015)Google Scholar
  43. 43.
    A. Sana Riyaz, A. Parveen, Perspect Sci. 8, 632–635 (2016)CrossRefGoogle Scholar
  44. 44.
    S. Canbin Ouyang, J. Feng, S. Huo, Wang, Green Energy Environ. 2, 134–141 (2017)CrossRefGoogle Scholar
  45. 45.
    W. Xu, S. Zhu, Y. Liang, Z. Li, Z. Cui, Sci. Rep., 5, 18125 (2015)CrossRefGoogle Scholar
  46. 46.
    M. Konsolakis, S.A.C. Carabineiro, G.E. Marnellos, M.F. Asad, J.L. Figueiredo, J. Colloid Interface Sci. 496, 141–149 (2017)CrossRefGoogle Scholar
  47. 47.
    K.A. Rieger, M. Porter, J.D. Schiffman, Materials, 9, 297 (2016)CrossRefGoogle Scholar
  48. 48.
    M. Lykaki, E. Pachatouridou, S.A.C. Carabineiro, E. Iliopoulou, M. Konsolakis, Appl. Catal. B 230, 18–28 (2018)CrossRefGoogle Scholar
  49. 49.
    A. Fakhri, S. Behrouz, Sol. Energy 117, 187–191 (2015)CrossRefGoogle Scholar
  50. 50.
    M.R.R. Mojgan Hosseini, A. Kahkha, Fakhri, S. Tahami, M.J. Lariche. J. Photochem. Photobiol. B 185, 24–31 (2018)CrossRefGoogle Scholar
  51. 51.
    A. Fakhri, R. Khakpour, J. Lumin. 160, 233–237 (2015)CrossRefGoogle Scholar
  52. 52.
    R. Wei Gao, A. Razavi, Fakhri, Int. J. Biol. Macromol. 114, 357–362 (2018)CrossRefGoogle Scholar
  53. 53.
    S.K. Tripathy, A. Mishra, S.K. Jha, R. Wahabd, A.A. Al-Khedhairyd, Anal. Methods 5, 1456 (2013)CrossRefGoogle Scholar
  54. 54.
    K. Yu, Z. Wu, Q. Zhao, B. Li, Y. Xie, J. Phys. Chem. C 112, 2244 (2008)CrossRefGoogle Scholar
  55. 55.
    L. Kronik, Y. Shapira, Surf. Interface Anal. 31, 954–965 (2001)CrossRefGoogle Scholar
  56. 56.
    B.K. Bammannavar, L.R. Naik, B.K. Chougule, J. Appl. Phys. 104, 064123 (2008)CrossRefGoogle Scholar
  57. 57.
    C.G. Koops, Phys. Rev. 83, 121–124 (1951)CrossRefGoogle Scholar
  58. 58.
    M. Mojgan Hosseini, A. Sarafbidabad, Z. Fakhri, S. NoorMohammadi, Int/ J. Biol. Macromol.,  https://doi.org/10.1016/j.ijbiomac.2018.06.176 CrossRefGoogle Scholar
  59. 59.
    M. El-Kemary, H. El-Shamy, I. El-Mehasseb, J. Lumin., 130 (2010) 2327–2331CrossRefGoogle Scholar
  60. 60.
    F.K. Nahid Khoshnamvand, A. Mostafapour, M. Faraji, AMB Express 8, 48 (2018)CrossRefGoogle Scholar
  61. 61.
    A. Hassani, A. Khataee, S. Karaca, J. Mol. Catal. A 409, 149–161 (2015)CrossRefGoogle Scholar
  62. 62.
    A. Gupta, A. Umar, S. Kaur, A. Sood, S.K. Dhir, A. Kansal, Mater. Res. Bull. 99, 359–366 (2018)CrossRefGoogle Scholar
  63. 63.
    M.S. Peres, M.G. Maniero, J.R. Guimarães, Photochem. Photobiol. Sci. 14, 556–562 (2015)CrossRefGoogle Scholar
  64. 64.
    E.S. Elmolla, M. Chaudhuri, J. Hazard. Mater. 173, 445–449 (2010)CrossRefGoogle Scholar
  65. 65.
    J. Blanco, S. Malato, P. Fernández, A. Vidal, Sol. Energy 67, 317–330 (1999)CrossRefGoogle Scholar
  66. 66.
    A. Mojgan Hosseini, A. Pourabadeh, J. Fakhri, S.T. Hallajzadeh, Int. J. Biol. Macromol. (2018)  https://doi.org/10.1016/j.ijbiomac.2018.07.065 CrossRefGoogle Scholar
  67. 67.
    S.K. Tripathy, A.S.K. Mishra, R. Jha, A.A. Wahab, Al-Khedhairy, J. Mater. Sci., 24 (2013) 2082Google Scholar
  68. 68.
    S.A.C. Carabineiro, T. Thavorn-Amornsri, M.F.R. Pereira, J.L. Figueiredo, Water Res. 45, 4583–4591 (2011)CrossRefGoogle Scholar
  69. 69.
    A.R. Silva, P.M. Martins, S. Teixeira, S.A.C. Carabineiro, K. Kuehn, G. Cuniberti, M.M. Alves, S. Lanceros-Mendezagh, L. Pereira, RSC Adv. 6, 95494 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsBaoshan UniversityYunnanPeople’s Republic of China
  2. 2.Health Management CollegeAnhui Medical UniversityHefeiPeople’s Republic of China
  3. 3.Young Researchers and Elites Club, Science and Research BranchIslamic Azad UniversityTehranIran
  4. 4.School of ElectronicsVignan Foundation for Science, Technology and ResearchGunturIndia
  5. 5.Tyumen Industrial UniversityTyumenRussia
  6. 6.School of Mathematics and PhysicsAnhui Jianzhu UniversityHefeiPeople’s Republic of China

Personalised recommendations